精英家教網 > 高中數學 > 題目詳情

【題目】已知數列的前項和為,且滿足:

(1)證明:是等比數列,并求數列的通項公式.

(2)設,若數列是等差數列,求實數的值;

(3)在(2)的條件下,設 記數列的前項和為,若對任意的存在實數,使得,求實數的最大值.

【答案】1 證明過程見解析 (2) (3)

【解析】

(1)由,再得出,兩式作差,得出,再分奇數項,偶數項分別求通項公式即可得解;

(2)由等差數列的等差中項可得恒成立,可得,解得;

(3)由已知有,由裂項求和法求數列前項和得,由分離變量最值法可得,運算即可得解.

解:(1)因為,①

所以,②

②-①得:,

由易得,即

,,

即數列的奇數項是以為首項,4為公比的等比數列,偶數項是以為首項,4為公比的等比數列,

為奇數時,

為偶數時,,

綜上可得

,

是等比數列,且數列的通項公式.

(2)因為,

所以,

因為數列是等差數列,

所以恒成立,

即有恒成立,

,

解得;

(3)因為=,

又對任意的存在實數,使得,

即對任意的 恒成立,

又當時,取最小值3,時,,

,

故實數的最大值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】定義為常數),若 .下述四個命題:

不存在極值;

②若函數 與函數 的圖象有兩個交點,則 ;

③若 上是減函數,則實數 的取值范圍是

④若 ,則在的圖象上存在兩點,使得在這兩點處的切線互相垂直

A. ①③④B. ②③④C. ②③D. ②④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}為等比數列,a1=2,公比q>0,且a2,6,a3成等差數列.

(1)求數列{an}的通項公式;

(2)設bn=log2an,,求使的n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對轄區(qū)內,,三類行業(yè)共200個單位的生態(tài)環(huán)境治理成效進行了考核評估,考評分數達到80分及其以上的單位被稱為“星級”環(huán)保單位,未達到80分的單位被稱為“非星級”環(huán)保單位.現通過分層抽樣的方法獲得了這三類行業(yè)的20個單位,其考評分數如下:

類行業(yè):85,82,77,78,83,87

類行業(yè):76,67,8085,79,81;

類行業(yè):8789,7686,7584,90,82

(Ⅰ)計算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個數;

(Ⅱ)若從抽取的類行業(yè)這6個單位中,再隨機選取3個單位進行某項調查,求選出的這3個單位中既有“星級”環(huán)保單位,又有“非星級”環(huán)保單位的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】長沙某超市計劃按月訂購一種冰激凌,每天進貨量相同,進貨成本為每桶5元,售價為每桶7元,未售出的冰激凌以每桶3元的價格當天全部處理完畢.根據往年銷售經驗,每天的需求量與當天最高氣溫(單位:)有關,如果最高氣溫不低于,需求量為600桶;如果最高氣溫(單位:)位于區(qū)間,需求量為400桶;如果最高氣溫低于,需求量為200桶.為了確定今年九月份的訂購計劃,統(tǒng)計了前三年九月份各天的最高氣溫數據,得下面的頻數分布表:

最高氣溫(

天數

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

1)求九月份這種冰激凌一天的需求量(單位:桶)的分布列;

2)設九月份一天銷售這種冰激凌的利潤為(單位:元),當九月份這種冰激凌一天的進貨量(單位:桶)為多少時,的均值取得最大值?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,命題p:函數內單調遞增;q:函數僅在處有極值.

1)若命題q是真命題,求a的取值范圍;

2)若命題是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數

1)求的值;

2時,求的取值范圍;

3)函數的性質通常指的是函數的定義域、值域、單調性、周期性、奇偶性等,請你探究函數其中的三個性質(直接寫出結論即可)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點,是函數圖象上的任意兩點,且角的終邊經過點,,的最小值為

1)求函數的解析式;

2)若方程內有兩個不同的解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,直線)與橢圓交于,兩點(點軸的上方).

1)若,求的面積;

2)是否存在實數使得以線段為直徑的圓恰好經過坐標原點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案