精英家教網(wǎng)設(shè)全集U=R,A={x|
x
x-2
<0},B={x|2x<2},則如圖中陰影部分表示的集合為( 。
A、{x|x≥1}
B、{x|1≤x<2}
C、{x|0<x≤1}
D、{x|x≤1}
分析:根據(jù)圖象可知陰影部分表示的集合為A∩(∁UB),然后根據(jù)集合的基本運(yùn)算即可得到結(jié)論.
解答:解:由Venn圖可知陰影部分表示的集合為A∩(∁UB),
∵A={x|
x
x-2
<0}={x|0<x<2},B={x|2x<2}={x|x<1},
∴A∩(∁UB)={x|1≤x<2},
故選:B.
點(diǎn)評(píng):本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|
x-2
x+1
<0}
,B={x|sin x≥
3
2
},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|
x-a
x+b
≥0}
,?UA=(-1,-a),則a+b=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|x<2},B={x||x-1|≤3},則(?UA)∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|x2+x-20<0},B={x||2x+5|>7},C={x|x2-3mx+2m2<0}.
(1)若C⊆(A∩B),求m的取值范圍;
(2)若(CUA)∩(CUB)⊆C,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|ax+1=0},B={1,2},若A∩(?UB)=?,則實(shí)數(shù)a的取值集合是( 。
A、{0}
B、?
C、{-1,-
1
2
}
D、{-1,-
1
2
,0}

查看答案和解析>>

同步練習(xí)冊(cè)答案