2x2+1與2x的大小關(guān)系是(     )

A.2x2+1>2x      B.2x2+1<2x        C.2x2+12x        D.不能確定

 

【答案】

A

【解析】

試題分析: 因為根據(jù)大小的比較,利用作差法,配方法得到2x2+1-2x=2(x-2+>0,∴2x2+1>2x,故選A.

考點:本題主要考查比較兩個數(shù)大小的方法,解決該類問題的一般步驟是作差-變形-判定符號-得出結(jié)論,屬于基礎(chǔ)題.

點評:解決該試題的關(guān)鍵是根據(jù)比較大小中最重要和常用的方法就是作差法,然后得到關(guān)于x的二次三項式,然后判定其符號。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列說法中:
①若函數(shù)f(x)=ax2+(2a+b)x+2(x∈[2a-1,a+4])是偶函數(shù),則實數(shù)b=2;
②f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
③已知函數(shù)f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(xy)=xf(y)+yf(x),則f(x)是奇函數(shù);
④設(shè)lg2=a,lg3=b那么可以得到log56=
a+b1-a
;
⑤函數(shù)f(x)=log2(3+2x-x2)的值域是(0,2),其中正確說法的序號是
①③④
①③④
(注:把你認為是正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實數(shù)b=2;
②f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
③若函數(shù)f(x)=|2x+a|的單調(diào)遞增區(qū)間是[3,+∞),則a=-6;
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(x•y)=x•f(y)+y•f(x),則f(x)是奇函數(shù).
其中正確說法的序號是
①③④
①③④
(注:把你認為是正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源:內(nèi)蒙古包頭市第三十三中學2011-2012學年高一上學期期中考試數(shù)學試題 題型:044

已知f(x)為二次函數(shù),且f(x+1)+f(x-1)=2x2-4x

(1)求f(x).

(2)當時,求f(2x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列說法中:
①若函數(shù)f(x)=ax2+(2a+b)x+2(x∈[2a-1,a+4])是偶函數(shù),則實數(shù)b=2;
②f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
③已知函數(shù)f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(xy)=xf(y)+yf(x),則f(x)是奇函數(shù);
④設(shè)lg2=a,lg3=b那么可以得到log56=
a+b
1-a
;
⑤函數(shù)f(x)=log2(3+2x-x2)的值域是(0,2),其中正確說法的序號是______(注:把你認為是正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源:0110 期中題 題型:填空題

下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實數(shù)b=2;
②f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
③如果在[-1,∞)上是減函數(shù),則實數(shù)a的取值范圍是(-8,-6];
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數(shù);
其中正確說法的序號是(    )(注:把你認為是正確的序號都填上)。

查看答案和解析>>

同步練習冊答案