已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.現(xiàn)已畫(huà)出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,并根據(jù)
(1)寫(xiě)出函數(shù)f(x)(x∈R)的增區(qū)間;
(2)寫(xiě)出函數(shù)f(x)(x∈R)的解析式;
(3)若函數(shù)g(x)=f(x)-2ax+2(x∈[1,2]),求函數(shù)g(x)的最小值.

【答案】分析:(1)根據(jù)偶函數(shù)的圖象關(guān)于y軸對(duì)稱,可作出f(x)的圖象,由圖象可得f(x)的單調(diào)遞增區(qū)間;
(2)令x>0,則-x<0,根據(jù)條件可得f(-x)=x2-2x,利用函數(shù)f(x)是定義在R上的偶函數(shù),可得f(x)=f(-x)=x2-2x,從而可得函數(shù)f(x)的解析式;
(3)先求出拋物線對(duì)稱軸x=a-1,然后分當(dāng)a-1≤1時(shí),當(dāng)1<a-1≤2時(shí),當(dāng)a-1>2時(shí)三種情況,根據(jù)二次函數(shù)的增減性解答.
解答:解:(1)如圖,根據(jù)偶函數(shù)的圖象關(guān)于y軸對(duì)稱,可作出f(x)的圖象,(2分),
則f(x)的單調(diào)遞增區(qū)間為(-1,0),(1,+∞);(5分)
(2)令x>0,則-x<0,∴f(-x)=x2-2x
∵函數(shù)f(x)是定義在R上的偶函數(shù),
∴f(x)=f(-x)=x2-2x
∴解析式為f(x)=(10分)
(3)g(x)=x2-2x-2ax+2,對(duì)稱軸為x=a+1,
當(dāng)a+1≤1時(shí),g(1)=1-2a為最;
當(dāng)1<a+1≤2時(shí),g(a+1)=-a2-2a+1為最;
當(dāng)a+1>2時(shí),g(2)=2-4a為最;
∴g(x)=.(16分)
點(diǎn)評(píng):本題考查函數(shù)圖象的作法,考查函數(shù)解析式的確定與函數(shù)的單調(diào)性,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)計(jì)算:[f(1)]2-[g(1)]2;
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問(wèn):|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點(diǎn),且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn;
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案