已知實數(shù)a、b滿足條件:ab<0,且1是a2與b2的等比中項,又是
1
a
,
1
b
的等差中項,則
a+b
a2+b2
的值是( 。
A、
1
2
B、-
1
2
C、
1
3
D、-
1
3
分析:根據(jù)等比數(shù)列與等差數(shù)列的性質可得a2b2=1,
1
a
+
1
b
=
a+b
ab
=2
,并且計算出ab=-1,a+b=-2.進而可得
a+b
a2+b2
=
a+b
(a+b)2-2ab
=-
1
3
解答:解:由題意得:1是a2與b2的等比中項,又是
1
a
,
1
b
的等差中項,
所以a2b2=1,
1
a
+
1
b
=
a+b
ab
=2

因為ab<0,
所以ab=-1,a+b=-2.
所以
a+b
a2+b2
=
a+b
(a+b)2-2ab
=
-2
4+2
=-
1
3

故選D.
點評:解決此類問題的關鍵是數(shù)列掌握等差數(shù)列與等比數(shù)列的性質,并且把所求的式子進行正確的化簡.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點A(2,0),B(2,1),C(0,1),動點M到定直線y=1的距離等于d,并且滿足
OM
AM
=k(
CM
BM
-d2)
,其中O為坐標原點,k為參數(shù).
(Ⅰ)求動點M的軌跡方程,并判斷曲線類型;
(Ⅱ)如果動點M的軌跡是一條圓錐曲線,其離心率e滿足
3
3
≤e≤
2
2
,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a,b滿足:(a-1)3+2011(a-1)=2012,(b-1)3+2011(b-1)=-2012.則下列四個結論中正確的結論的序號是
①③
①③

①點(a,b)在一條定直線上;
a>2+
11000

③a>b;
④(a-1)(b-1)=2011.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知實數(shù)a,b滿足:(a-1)3+2011(a-1)=2012,(b-1)3+2011(b-1)=-2012.則下列四個結論中正確的結論的序號是________.
①點(a,b)在一條定直線上;
數(shù)學公式;
③a>b;
④(a-1)(b-1)=2011.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知實數(shù)a,b滿足:(a-1)3+2011(a-1)=2012,(b-1)3+2011(b-1)=-2012.則下列四個結論中正確的結論的序號是______.
①點(a,b)在一條定直線上;
a>2+
1
1000
;
③a>b;
④(a-1)(b-1)=2011.

查看答案和解析>>

科目:高中數(shù)學 來源:河南省期末題 題型:單選題

已知實數(shù)x,y滿足(x∈Z,y∈Z),每一對整數(shù)(x,y)對應平面上一個點,經(jīng)過其中任意兩點作直線,則不同直線的條數(shù)是
[     ]
A.14
B.19
C.36
D.72

查看答案和解析>>

同步練習冊答案