如圖,

(I)
(II)
見解析
(I)由直線CD與相切,得到
由AB是的直徑,
,
(II)
,同理可得

第一問由切線聯(lián)想到弦切角定理,進而轉(zhuǎn)化到直角三角形中來解決角相等問題;第二問主要是在直角三角形中由,進而想到利用三角形全等知識來解決。
【考點定位】本題考查平面幾何弦切角定理,全等三角形知識以及相似三角形知識,在處理幾何量的關(guān)系時運用等量代換。。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,為圓的直徑,為垂直于的一條弦,垂足為,弦交于點.

(Ⅰ)證明:四點共圓;
(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知梯形的中位線長10 cm,一條對角線將中位線分成的兩部分之差是3 cm,則該梯形中的較大的底是________ cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,四邊形是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的圓交于點,連接并延長.則線段的長為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB為圓O的直徑,PA為圓O的切線,PB與圓O相交于D,PA=3,,則PD=        ,AB=          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知與圓相切于點,經(jīng)過點的割線交圓于點,的平分線分別交于點.

(1)證明:;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

A.對任意恒成立,則滿足________.
B.在極坐標(biāo)系中,點到直線的距離是_______.
C.如圖,點P在圓O直徑AB的延長線上,且PB=OB=2, PC切圓O于點C,CD⊥AB于點D,則CD=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,AB是⊙O的直徑,過圓上一點E作切線EDAF,交AF的延長線于點D,交AB的延長線于點C.若CB=2,CE=4,則AD的長為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是半圓的直徑,的延長線上,與半圓相切于點,.若,,則______.

查看答案和解析>>

同步練習(xí)冊答案