=   
【答案】分析:按多項(xiàng)式乘法運(yùn)算法則展開(kāi),化簡(jiǎn)為a+bi(a,b∈R)的形式,即可.
解答:解:∵==-1
故答案為:-1
點(diǎn)評(píng):本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查計(jì)算能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年北京市豐臺(tái)區(qū)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè),g(x)是二次函數(shù),若f(g(x))的值域是[0,+∞),則g(x)的值域是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年北京市石景山區(qū)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知:如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2.
(Ⅰ)求證:平面PDC⊥平面PAD;
(Ⅱ)若E是PD的中點(diǎn),求異面直線AE與PC所成角的余弦值;
(Ⅲ)點(diǎn)G在線段BC上,且,求點(diǎn)D到平面PAG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年數(shù)學(xué)寒假作業(yè)(09)(解析版) 題型:解答題

已知等軸雙曲線C的兩個(gè)焦點(diǎn)F1、F2在直線y=x上,線段F1F2的中點(diǎn)是坐標(biāo)原點(diǎn),且雙曲線經(jīng)過(guò)點(diǎn)(3,).
(1)若已知下列所給的三個(gè)方程中有一個(gè)是等軸雙曲線C的方程:①x2-y2=;②xy=9;③xy=.請(qǐng)確定哪個(gè)是等軸雙曲線C的方程,并求出此雙曲線的實(shí)軸長(zhǎng);
(2)現(xiàn)要在等軸雙曲線C上選一處P建一座碼頭,向A(3,3)、B(9,6)兩地轉(zhuǎn)運(yùn)貨物.經(jīng)測(cè)算,從P到A、從P到B修建公路的費(fèi)用都是每單位長(zhǎng)度a萬(wàn)元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費(fèi)用最低?
(3)如圖,函數(shù)y=x+的圖象也是雙曲線,請(qǐng)嘗試研究此雙曲線的性質(zhì),你能得到哪些結(jié)論?(本小題將按所得到的雙曲線性質(zhì)的數(shù)量和質(zhì)量酌情給分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年數(shù)學(xué)寒假作業(yè)(09)(解析版) 題型:填空題

設(shè)i是虛數(shù)單位,復(fù)數(shù)z1=1+i,z2=t+2i(t∈R),若z1是實(shí)數(shù),則t=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年北京市豐臺(tái)區(qū)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若平面向量與向量=(1,-2)的夾角是180°,且,則=( )
A.(-3,6)
B.(3,-6)
C.(6,-3)
D.(-6,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第1章 導(dǎo)數(shù)及其應(yīng)用》2010年單元測(cè)試卷(1)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=(a-2)ln(-x)++2ax(a∈R).
(Ⅰ)當(dāng)a=0時(shí),求f(x)的極值;
(Ⅱ)當(dāng)a≠0時(shí),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年山東省聊城一中高三模塊測(cè)試數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知關(guān)于x的不等式的解集,則實(shí)數(shù)a=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年北京市昌平區(qū)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知m、n是兩條不重合的直線,α、β、γ是三個(gè)兩兩不重合的平面,給出
①若m⊥α,m⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若m?α,n?β,m∥n,則α∥β;
④若m、n是異面直線,m?α,m∥β,n?β,n∥α,則α∥β
上面四個(gè)命題中,其中真命題有   

查看答案和解析>>

同步練習(xí)冊(cè)答案