已知函數(shù)g(x)=2x,且有g(a)g(b)=2,若a>0且b>0,則ab的最大值為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    2
  4. D.
    4
B
分析:先根據(jù)條件得出a+b=1,再應用均值不等式可以把條件轉化為關于 的不等式,進而解出ab的取值范圍.
解答:∵函數(shù)g(x)=2x,且有g(a)g(b)=2,
∴2a•2b=2?a+b=1,
∵a,b∈(0,+∞),
∴a+b ,即2 ≤1,當且僅當a=b時取等號,
解得ab≤
故選B.
點評:本題是通過基本不等式,創(chuàng)造所要求的變量,通過解不等式求最大值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=
3
4
-
1
2
sinxcos-
3
2
sin2
x的圖象按向量
m
=(-
π
4
,
1
2
)平移得到函數(shù)f(x)=acos2(x+
π
3
)+b的圖象.
(1)求實數(shù)a、b的值;
(2)設函數(shù)φ(x)=g(x)-
3
f(x),x∈[0,
π
2
],求函數(shù)φ(x)的單調遞增區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=
x
+1,h(x)=
1
x+3
,x∈(-3,a],其中a為常數(shù)且a>0,令函數(shù)f(x)=g(x)•h(x).
(1)求函數(shù)f(x)的表達式,并求其定義域;
(2)當a=
1
4
時,求函數(shù)f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)對定義域中任意x,均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關于點(a,b)對稱;
(1)已知f(x)=
x2-mx+1x
的圖象關于點(0,1)對稱,求實數(shù)m的值;
(2)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關于點(0,1)對稱,且當x∈(0,+∞)時,g(x)=-2x-n(x-1),求函數(shù)g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的條件下,若對實數(shù)x<0及t>0,恒有g(x)+tf(t)>0,求正實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•邯鄲一模)已知函數(shù)g(x)是R上的奇函數(shù),且當x<0時g(x)=-ln(1-x),函數(shù)f(x)=
x3
 (x≤0)
g
 (x>0),
若f(2-x2)>f(x),則實數(shù)x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對定義在[0,1]上,并且同時滿足以下兩個條件的函數(shù)f(x)稱為G函數(shù).
①對任意的x∈[0,1],總有f(x)≥0;
②當x1≥0,x2≥0,x1+x2≤1時,總有f(x1+x2)≥f(x1)+f(x2)成立.
已知函數(shù)g(x)=x2與h(x)=a•2x-1是定義在[0,1]上的函數(shù).
(1)試問函數(shù)g(x)是否G函數(shù)?并說明理由;
(2)若函數(shù)h(x)是G函數(shù),求實數(shù)a的值;
(3)在(2)的條件下,是否存在實數(shù)m,使方程g(2x-1)+h(x)=m恰有兩解?若存在,求出實數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案