設(shè)函數(shù)f(x)=|x2-4x-5|.
(1)在區(qū)間[-2,6]上畫出函數(shù)f(x)的圖象;
(2)設(shè)集合A={x|f(x)≥5},?B=(-∞,-2]∪[0,4]∪[6,+∞).試判斷集合A和B之間的關(guān)系(要寫出判斷過程);
(3)當(dāng)k>2時,求證:在區(qū)間[-1,5]上,y=kx+3k的圖象位于函數(shù)f(x)圖象的上方.
【答案】分析:(1)當(dāng)x2-4x-5>0時,f(x)=x2-4x-5;當(dāng)x2-4x-5<0時,f(x)=x2-4x-5,進(jìn)而畫出圖象.
(2)先求出f(x)≥5的解集,再判斷集合A和B的關(guān)系.
(3)設(shè)函數(shù)g(x)=kx+3k-f(x),只要證明g(x)>0恒成立即可.
解答:解:(1)設(shè)-2≤x≤6,當(dāng)x2-4x-5≥0時,
即6≥x≥5或-1≥x≥-2時,f(x)=x2-4x-5=(x-2)2-9
當(dāng)x2-4x-5<0時,即-1<x<5時,f(x)=-(x2-4x-5)=-(x-2)2+9
故作圖如下.

(2)方程f(x)=5的解分別是
,由于f(x)在(-∞,-1]和[2,5]上單調(diào)遞減,
在[-1,2]和[5,+∞)上單調(diào)遞增,

由于2+<6,2->-2
∴B?A.

(3)當(dāng)x∈[-1,5]時,f(x)=-x2+4x+5.
g(x)=k(x+3)-(-x2+4x+5)=x2+(k-4)x+(3k-5)=,
∵k>2,∴?.又-1≤x≤5,
①當(dāng),即2<k≤6時,
,g(x)min=
∵?16≤(k-10)2<64,?
∴?(k-10)2-64<0,則g(x)min>0.
②當(dāng),即k>6時,取x=-1,g(x)min=2k>0.
由①、②可知,當(dāng)k>2時,g(x)>0,x∈[-1,5].
因此,在區(qū)間[-1,5]上,y=k(x+3)的圖象位于函數(shù)f(x)圖象的上方.
點(diǎn)評:本題主要考查了函數(shù)圖象的應(yīng)用.注意數(shù)形結(jié)合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)锳,若存在非零實(shí)數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域?yàn)閇0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是(  )
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
,
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案