(08年龍巖一中模擬理)(12分)

平面直角坐標系中,O為坐標原點,給定兩點A(1,0)、B(0,-2),點C滿足,其中,且

(1)求點C的軌跡方程;

(2)設點C的軌跡與雙曲線交于兩點M、N,且以MN為直徑的圓過原點,若雙曲線的離心率不大于,求雙曲線實軸長的取值范圍.

解析:(1)設C(x,y),因為,則

,得,即點C的軌跡方程為……4分

(2)由,得

依題意知,設

因為以MN為直徑的圓過原點,所以

,即

,得……………8分

,∴,∴

,∴,∴,從而

∴雙曲線實軸長的取值范圍是(0,1].……………12分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年龍巖一中模擬)(12分)

如圖,三棱錐P―ABC中, PC平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD平面PAB.

(Ⅰ) 求證:AB平面PCB;

(Ⅱ)求異面直線AP與BC所成角的大;                                     

(Ⅲ)求二面角C-PA-B的大小的余弦值.         

                                                                                                                                                               

                                                                          

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年龍巖一中模擬文)(12分)

設a、b、c分別是先后三次拋擲一枚骰子得到的點數(shù)。

(Ⅰ)求a+b+c為奇數(shù)的概率

(Ⅱ)設有關于的一元二次方程,求上述方程有兩個不相等實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年龍巖一中模擬理)(14分)

已知函數(shù)

(1)證明:當時,上是增函數(shù);

(2)對于給定的閉區(qū)間,試說明存在實數(shù) ,當時,在閉區(qū)間上是減函數(shù);

(3)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年龍巖一中模擬文)(12分)

設數(shù)列的前n項和為,已知

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)設

并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年龍巖一中模擬)(12分)

盒內有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球. 規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得分. 現(xiàn)從盒內一次性取3個球.

(Ⅰ)求取出的3個球得分之和恰為1分的概率;

(Ⅱ)設為取出的3個球中白色球的個數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案