已知拋物線y2=2px(p>0)的焦點為F,直線L:2px+3y=p2
⑴當p為何值時,焦點F到直線L的距離最大;
⑵在第⑴題下,又若拋物線與直線L相交于A、B兩點。求△ABF的面積。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓方程,過B(-1,0)的直線l交隨圓于C、D兩點,交直線x=-4于E點,B、E分的比分λ1、λ2.求證:λ1+λ2=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的左、右焦點分別為,離心率,右準線方程. (1)求橢圓的標準方程;(2)過點的直線與該橢圓相交于M、N兩點,且求直線的方程式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知以為圓心、半徑為的一個圓內有一個定點,如果圓過定點且與圓相切,求圓心的軌跡。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線中心在原點,一個頂點的坐標為,且焦距與虛軸長之比為,則雙曲線的標準方程是____________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知的三邊長成等差數(shù)列,若點的坐標分別為.(1)求頂點的軌跡的方程;(2)若線段的延長線交軌跡于點,當時求線段的垂直平分線軸交點的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓上任意一點到兩焦點距離之和為4,直線為該橢圓的一條準線.
1)求橢圓C的方程;
2)設直線與橢圓C交于不同的兩點(其中為坐標原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的左、右焦點分別是F1、F2,離心率為
3
2
,過F1且垂直于x軸的直線被橢圓C截得的線段長為1;
(Ⅰ)求橢圓C的方程.
(Ⅱ)若A,B,C是橢圓上的三個點,O是坐標原點,當點B是橢圓C的右頂點,且四邊形OABC為菱形時,求此菱形的面積.
(Ⅲ)設點p是橢圓C上除長軸端點外的任一點,連接PF1、PF2,設∠F1PF2的角平分線PM交橢圓C的長軸于點M(m,0),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


查看答案和解析>>

同步練習冊答案