(福建卷理)(本小題滿分13分)
已知A,B 分別為曲線C: +=1(y0,a>0)與x軸
的左、右兩個(gè)交點(diǎn),直線過點(diǎn)B,且與軸垂直,S為上
異于點(diǎn)B的一點(diǎn),連結(jié)AS交曲線C于點(diǎn)T.
(1)若曲線C為半圓,點(diǎn)T為圓弧的三等分點(diǎn),試求出點(diǎn)S的坐標(biāo);
(II)如圖,點(diǎn)M是以SB為直徑的圓與線段TB的交點(diǎn),試問:是否存在,使得O,M,S三點(diǎn)共線?若存在,求出a的值,若不存在,請(qǐng)說明理由。
,故存在,使得O,M,S三點(diǎn)共線.
解 方法一
(Ⅰ)當(dāng)曲線C為半圓時(shí),如圖,由點(diǎn)T為圓弧的三等分點(diǎn)得∠BOT=60°或120°.
(1)當(dāng)∠BOT=60°時(shí), ∠SAE=30°.
又AB=2,故在△SAE中,有
(2)當(dāng)∠BOT=120°時(shí),同理可求得點(diǎn)S的坐標(biāo)為,綜上,
(Ⅱ)假設(shè)存在,使得O,M,S三點(diǎn)共線.
由于點(diǎn)M在以SB為直線的圓上,故.
顯然,直線AS的斜率k存在且k>0,可設(shè)直線AS的方程為.
由
設(shè)點(diǎn)
故,從而.
亦即
由得
由,可得即
經(jīng)檢驗(yàn),當(dāng)時(shí),O,M,S三點(diǎn)共線. 故存在,使得O,M,S三點(diǎn)共線.
方法二:
(Ⅰ)同方法一.
(Ⅱ)假設(shè)存在a,使得O,M,S三點(diǎn)共線.
由于點(diǎn)M在以SO為直徑的圓上,故.
顯然,直線AS的斜率k存在且k>0,可設(shè)直線AS的方程為
由
設(shè)點(diǎn),則有
故
由所直線SM的方程為
O,S,M三點(diǎn)共線當(dāng)且僅當(dāng)O在直線SM上,即.
故存在,使得O,M,S三點(diǎn)共線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(07年福建卷理)(本小題滿分12分)如圖,正三棱柱的所有棱長(zhǎng)都為,為中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年福建卷理)(本小題滿分12分)在中,,.
(Ⅰ)求角的大小;
(Ⅱ)若最大邊的邊長(zhǎng)為,求最小邊的邊長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年福建卷理)(本小題滿分12分)
如圖,橢圓的一個(gè)焦點(diǎn)是,O為坐標(biāo)原點(diǎn).
。á瘢┮阎獧E圓短軸的兩個(gè)三等分點(diǎn)與一個(gè)焦點(diǎn)構(gòu)成正三角
形,求橢圓的方程;
(Ⅱ)設(shè)過點(diǎn)F的直線l交橢圓于A、B兩點(diǎn).若直線l繞點(diǎn)F
任意轉(zhuǎn)動(dòng),恒有,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年福建卷理)(本小題滿分12分)
如圖,橢圓的一個(gè)焦點(diǎn)是,O為坐標(biāo)原點(diǎn).
。á瘢┮阎獧E圓短軸的兩個(gè)三等分點(diǎn)與一個(gè)焦點(diǎn)構(gòu)成正三角
形,求橢圓的方程;
(Ⅱ)設(shè)過點(diǎn)F的直線l交橢圓于A、B兩點(diǎn).若直線l繞點(diǎn)F
任意轉(zhuǎn)動(dòng),恒有,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年福建卷理)(本小題滿分12分)
如圖,在四棱錐中,則面PAD⊥底面,側(cè)棱,底面為直角梯形,其中
,,O為中點(diǎn)。
(Ⅰ)求證:PO⊥平面;
(Ⅱ)求異面直線PB與CD所成角的大小;
(Ⅲ)線段AD上是否存在點(diǎn)Q,使得它到平面PCD的距離為?若存在,求出 的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com