【題目】已知函數f(x)滿足f(x)=f( ),當x∈[1,4]時,f(x)=lnx,若在區(qū)間x∈[ ,4]內,函數g(x)=f(x)﹣ax與x軸有三個不同的交點,則實數a的取值范圍是 .
科目:高中數學 來源: 題型:
【題目】小王、小張兩位同學玩投擲正四面體(每個面都為等邊三角形的正三棱錐)骰子(骰子質地均勻,各面上的點數分別為)游戲,規(guī)則:小王現(xiàn)擲一枚骰子,向下的點數記為,小張后擲一枚骰子,向下的點數記為,
(1)在直角坐標系中,以為坐標的點共有幾個?試求點落在直線上的概率;
(2)規(guī)定:若,則小王贏,若,則小張贏,其他情況不分輸贏,試問這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了了解該校學生對于某項運動的愛好是否與性別有關,通過隨機抽查110名學生,得到如下2×2的列聯(lián)表:
喜歡該項運動 | 不喜歡該項運動 | 總計 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由公式K2= ,算得K2≈7.61
附表:
p(K2≥k0) | 0.025 | 0.01 | 0.005 |
k0 | 5.024 | 6.635 | 7.879 |
參照附表,以下結論正確是( )
A.有99.5%以上的把握認為“愛好該項運動與性別有關”
B.有99.5%以上的把握認為“愛好該項運動與性別無關”
C.有99%以上的把握認為“愛好該項運動與性別有關”
D.有99%以上的把握認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且對任意正整數n,都有3an=2Sn+3成立.
(1)求數列{an}的通項公式;
(2)設bn=log3an , 求數列{ }的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓E: (a>b>0)過點( ,1),且與直線 x+2y﹣4=0相切.
(1)求橢圓E的方程;
(2)若橢圓E與x軸交于M、N兩點,橢圓E內部的動點P使|PM|、|PO|、|PN|成等比數列,求 的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四面體ABCD的頂點都在球O表面上,且AB=BC=AC=2 ,DA=DB=DC=2,過AD作相互垂直的平面α、β,若平面α、β截球O所得截面分別為圓M、N,則( )
A.MN的長度是定值
B.MN長度的最小值是2
C.圓M面積的最小值是2π
D.圓M、N的面積和是定值8π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且對任意正整數n,都有3an=2Sn+3成立.
(1)求數列{an}的通項公式;
(2)設bn=log3an , 求數列{ }的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,E、F分別為A1C1、B1C1的中點,D為棱CC1上任一點.
(Ⅰ)求證:直線EF∥平面ABD;
(Ⅱ)求證:平面ABD⊥平面BCC1B1 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com