【題目】在直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù)),在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρsin2θ4cosθ

1)求直線l的普通方程與曲線C的直角坐標方程;

2)若直線lx軸的交點為F,直線l與曲線C的交點為A、B,求|FA|+|FB|的值.

【答案】(1)直線l的普通方程為,曲線C的直角坐標方程為y24x

(2)16

【解析】

1)消參即可求出直線l的普通方程,由代入即可求出曲線C的直角坐標方程.

2)將直線的參數(shù)方程代入曲線方程,根據韋達定理求出,t1t2=﹣16t1t2AB對應的參數(shù)),由即可求解.

1)直線l的參數(shù)方程為t為參數(shù)),轉換為直角坐標方程為

曲線C的極坐標方程為ρsin2θ4cosθ.整理得(ρsinθ24ρcosθ,轉換為直角坐標方程為y24x

2)由于直線lx軸的交點坐標為(1,0),所以把直線l的參數(shù)方程t為參數(shù))代入y24x

得到,即

所以,t1t2=﹣16t1t2A、B對應的參數(shù)),

所以|FA|+|FB|

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學經典名著,其中有這樣一個問題:今有圓材,埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?其意為:今有-圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該木材,鋸口深一寸,鋸道長-尺.問這塊圓柱形木材的直徑是多少?現(xiàn)有長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內的部分).已知弦尺,弓形高寸,估算該木材鑲嵌在墻體中的體積約為__________立方寸.(結果保留整數(shù))

注:l丈=10尺=100寸,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調查機構為了解人們對某個產品的使用情況是否與性別有關,在網上進行了問卷調查,在調查結果中隨機抽取了份進行統(tǒng)計,得到如下列聯(lián)表:

男性

女性

合計

使用

15

5

20

不使用

10

20

30

合計

25

25

50

1)請根據調查結果你有多大把握認為使用該產品與性別有關;

2)在不使用該產品的人中,按性別用分層抽樣抽取人,再從這人中隨機抽取人參加某項活動,記被抽中參加該項活動的女性人數(shù)為,求的分布列和數(shù)學期望.

附:,

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)設,曲線在點處的切線在軸上的截距為,求的最小值;

(Ⅱ)若只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的極坐標方程是,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C經過伸縮變換得到曲線E,直線lt為參數(shù))與曲線E交于A,B兩點,

1)設曲線C上任一點為,求的最小值;

2)求出曲線E的直角坐標方程,并求出直線l被曲線E截得的弦AB長;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD⊥平面BCD,點E,F(EA,D不重合)分別在棱AD,BD上,且EFAD.

求證:(1)EF∥平面ABC;

(2)ADAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形的邊長為,,交于點.將菱形沿對角線折起,得到三棱錐,點是棱的中點,

(I)求證:平面⊥平面;

(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】試比較下面概率的大小:

1)如果以連續(xù)擲兩次骰子依次得到的點數(shù)m,n作為點P的橫、縱坐標,點P在直線的下面包括直線的概率;

2)在正方形,,x,隨機地投擲點P,求點P落在正方形T內直線的下面包括直線的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,是橢圓上一點,軸,.

1)求橢圓的標準方程;

2)若直線與橢圓交于、兩點,線段的中點為,為坐標原點,且,求面積的最大值.

查看答案和解析>>

同步練習冊答案