對于函數(shù)
(1)用函數(shù)單調(diào)性的定義證明f(x)在(-∞,+∞)上是增函數(shù);
(2)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?
【答案】分析:(1)任取x1,x2∈(-∞,+∞),且x1<x2,判斷f(x1)-f(x2)的符號,進(jìn)而根據(jù)函數(shù)單調(diào)性的定義,可得結(jié)論;
(2)根據(jù)奇函數(shù)的定義,令f(-x)+f(x)=0,根據(jù)指數(shù)的運(yùn)算性質(zhì),可求出a值.
解答:證明:任取x1,x2∈(-∞,+∞),且x1<x2
,,
∴f(x1)-f(x2)=()-()=-=<0
∴f(x1)<f(x2
∴f(x)在(-∞,+∞)上是增函數(shù);
(2)若函數(shù)為奇函數(shù)
則f(-x)+f(x)=+=+==2a-2=0
解得a=1
故存在實(shí)數(shù)a=1使函數(shù)f(x)為奇函數(shù)
點(diǎn)評:本題考查的知識點(diǎn)是函數(shù)的單調(diào)性和函數(shù)的奇偶性,熟練掌握函數(shù)單調(diào)性與奇偶性的定義是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=x-2-lnx,我們知道f(3)=1-ln3<0,f(4)=2-ln4>0,用二分法求函數(shù)f(x)在區(qū)間(3,4)內(nèi)的零點(diǎn)的近似值,我們先求出函數(shù)值f(3.5),若已知ln3.5=1.25,則接下來我們要求的函數(shù)值是f (
3.25
3.25
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出函數(shù)封閉的定義:若對于定義域D內(nèi)的任意一個自變量x0,都有函數(shù)值f(x0)∈D,稱函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷函數(shù)g(x)=2x-1是否在D1上封閉,并說明理由;
(2)若定義域D2=(1,5],是否存在實(shí)數(shù)a,使得函數(shù)f(x)=
5x-ax+2
在D2上封閉?若存在,求出a的取值范圍;若不存在,請說明理由.
(3)利用(2)中函數(shù),構(gòu)造一個數(shù)列{xn},方法如下:對于給定的定義域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過程中,如果xi(i=1,2,3,4…)在定義域中,構(gòu)造數(shù)列的過程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.
①如果可以用上述方法構(gòu)造出一個無窮常數(shù)列{xn},求實(shí)數(shù)a的取值范圍.
②如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{xn},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

對于函數(shù)f(x)=x-2-lnx,我們知道f(3)=1-ln3<0,f(4)=2-ln4>0,用二分法求函數(shù)f(x)在區(qū)間(3,4)內(nèi)的零點(diǎn)的近似值,我們先求出函數(shù)值f(3.5),若已知ln3.5=1.25,則接下來我們要求的函數(shù)值是f (________).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于函數(shù)f(x)=x-2-lnx,我們知道f(3)=1-ln3<0,f(4)=2-ln4>0,用二分法求函數(shù)f(x)在區(qū)間(3,4)內(nèi)的零點(diǎn)的近似值,我們先求出函數(shù)值f(3.5),若已知ln3.5=1.25,則接下來我們要求的函數(shù)值是f (______).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年浙江省紹興市諸暨市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

對于函數(shù)f(x)=x-2-lnx,我們知道f(3)=1-ln3<0,f(4)=2-ln4>0,用二分法求函數(shù)f(x)在區(qū)間(3,4)內(nèi)的零點(diǎn)的近似值,我們先求出函數(shù)值f(3.5),若已知ln3.5=1.25,則接下來我們要求的函數(shù)值是f (    ).

查看答案和解析>>

同步練習(xí)冊答案