已知關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1.
(1)設(shè)集合P={-1,2,3}和Q={-2,1,2},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)設(shè)點(diǎn)(a,b)是區(qū)域
x+y-6≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),求函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.
(1)分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,有(-1,-2)、(-1,1)、(-1,2)、
(2,-2)、(2,1)、(2,2)、(3,-2)、(3,1)和(3,2)共9個(gè)基本事件.
∵二次函數(shù)f(x)=ax2-4bx+1的圖象的對(duì)稱(chēng)軸為x=
2b
a
,要使函數(shù)f(x)=ax2-4bx+1在區(qū)間
[1,+∞)上為增函數(shù),當(dāng)且僅當(dāng)a>0且
2b
a
≤1成立,即a>0且2b≤a.
若a=2,則b=-2或1;若a=3,則b=-2或1.
由此可得滿(mǎn)足條件的基本事件包含基本事件的個(gè)數(shù)是2+2=4.
∴函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率為P=
4
9
;
(2)由(1)知當(dāng)且僅當(dāng)a>0且2b≤a時(shí),函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù).
根據(jù)題意全部結(jié)果所構(gòu)成的區(qū)域?yàn)闈M(mǎn)足不等式
x+y-6≤0
x>0
y>0
的實(shí)數(shù)對(duì)(a,b)構(gòu)成的集合,相應(yīng)的區(qū)域?yàn)槿缬覉D的△OAB及其內(nèi)部.
其中符合“函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)”的實(shí)數(shù)對(duì)(a,b),滿(mǎn)足不等式
a+b-6<0
a>0且b>0
2b≤a
,相應(yīng)的區(qū)域?yàn)槿缬覉D的△OAC及其內(nèi)部.
∵A(6,0),B(0,6),C(4,2),
∴S△OAB=
1
2
×6×6=18,S△OAC=
1
2
×6×2=6
∴所求事件的概率為P=
S△OAC
S△OAB
=
6
18
=
1
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)變量x,y滿(mǎn)足約束條件
x-y≥-1
x+y≤4
y≥2
則目標(biāo)函數(shù)z=2x+4y的最大值為( 。
A.10B.12C.13D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)的導(dǎo)數(shù)為g(x),則滿(mǎn)足條件的點(diǎn)(x,y)所形成的區(qū)域的面積為                                      ( )
A.B.C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(文)已知x,y滿(mǎn)足線(xiàn)性約束條件
2x+y-2≥0
x-2y+4≥0
3x-y-3≤0
,則
y
x
的取值范圍是( 。
A.[0,+∞)B.[
3
2
,+∞)
C.[0,
3
2
]
D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

不等式組
x+y≥0
x-y+3≥0
0≤x≤3
所表示的平面區(qū)域的面積等于(  )
A.3B.9C.18D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

實(shí)數(shù)x、y滿(mǎn)足不等式組
y≥0
x-y≥0
2x-y-2≤0
,則w=
y-1
x+1
的取值范圍(  )
A.[-1,
1
3
]
B.[-
1
2
,
1
3
]
C.[
1
2
,+∞)
D.[-
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若不等式組
x≥0
y≥0
y≤-kx+4k
表示的區(qū)域面積為S,則
(1)當(dāng)S=2時(shí),k=______;
(2)當(dāng)k>1時(shí),
kS
k-1
的最小值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)x,y滿(mǎn)足約束條件
x≥-3
y≥-4
-4x+3y≤12
4x+3y≤36

(1)求目標(biāo)函數(shù)z=2x+3y的最小值與最大值.
(2)求目標(biāo)函數(shù)z=-4x+3y-24的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)M(a,b)在由不等式組
x≥0
y≥0
x+y≤2
確定的平面區(qū)域內(nèi),則點(diǎn)N(a+b,a-b)所在平面區(qū)域的面積是( 。
A.1B.2C.4D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案