【題目】如圖,、是兩個(gè)小區(qū)所在地,、到一條公路的垂直距離分別為,,兩端之間的距離為.
(1)某移動公司將在之間找一點(diǎn),在處建造一個(gè)信號塔,使得對、的張角與對、的張角相等,試確定點(diǎn)的位置.
(2)環(huán)保部門將在之間找一點(diǎn),在處建造一個(gè)垃圾處理廠,使得對、所張角最大,試確定點(diǎn)的位置.
【答案】(1);(2).
【解析】
試題(1)設(shè),我們只要利用已知列出關(guān)于的方程即可,而這個(gè)方程就是在兩個(gè)三角形中利用正切的定義,,,因此有,解之得;實(shí)際上本題可用相似形知識求解,,則,由引開出方程解出;(2)要使得最大,可通過求,因?yàn)?/span>
,只要設(shè),則都可用表示出來,從而把問題轉(zhuǎn)化為求函數(shù)的最值,同(1)可得,這里我們用換元法求最值,令,則有,注意到,可取負(fù)數(shù),即為鈍角,因此在取負(fù)值中的最小值時(shí),取最大值.
(1)設(shè),,.
依題意有,. 3分
由,得,解得,故點(diǎn)應(yīng)選在距點(diǎn)2處. 6分
(2)設(shè),,.
依題意有,,
10分
令,由,得,,
12分
,,
當(dāng),所張的角為鈍角,最大角當(dāng),即時(shí)取得,故點(diǎn)應(yīng)選在距點(diǎn)處. 14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),.
(1)若對任意的,,都有恒成立,試求m的取值范圍;
(2)用表示m,n中的最小值,設(shè)函數(shù)(),討論關(guān)于x的方程的實(shí)數(shù)解的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),==0,(x1≠x2),|x2-x1|min=,f(x)=f(-x),將函數(shù)f(x)的圖象向左平移個(gè)單位長度得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞減區(qū)間是
A. [kπ-,kπ+](k∈Z) B. [kπ,kπ+](k∈Z)
C. [kπ+,kπ+](k∈Z) D. [kπ+,kπ+](k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A恒過點(diǎn),且與直線: 相切.
(1)求動圓圓心的軌跡的方程;
(2)探究在曲線上,是否存在異于原點(diǎn)的兩點(diǎn), ,當(dāng)時(shí),直線恒過定點(diǎn)?若存在,求出該定點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若直角三角形兩直角邊長之和為12,求其周長的最小值;
(2)若三角形有一個(gè)內(nèi)角為,周長為定值,求面積的最大值;
(3)為了研究邊長滿足的三角形其面積是否存在最大值,現(xiàn)有解法如下:(其中, 三角形面積的海倫公式),
∴
,
而,,,則,
但是,其中等號成立的條件是,于是與矛盾,
所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請你給出正確的答案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】的內(nèi)角A,B,C的對邊分別為a,b,c,已知.
(1)求C;
(2)若,的面積為,求的周長;
(3)若,求周長的取值范圍;
(4)若,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,,點(diǎn),,分別為線段,,的中點(diǎn),點(diǎn)是線段的中點(diǎn).求證:
(1)平面;
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB= ,AD=2,E,F為線段AB的三等分點(diǎn),G、H為線段DC的三等分點(diǎn).將長方形ABCD卷成以AD為母線的圓柱W的半個(gè)側(cè)面,AB、CD分別為圓柱W上、下底面的直徑.
(Ⅰ)證明:平面ADHF⊥平面BCHF;
(Ⅱ)若P為DC的中點(diǎn),求三棱錐H—AGP的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓.
(1)若直線l過且被圓C截得的弦長為,求直線l的方程;
(2)點(diǎn),,點(diǎn)Q是圓C上的任意一點(diǎn),求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com