【題目】已知函數(shù)f(x)= x2 , g(x)=alnx.
(1)若曲線y=f(x)﹣g(x)在x=1處的切線的方程為6x﹣2y﹣5=0,求實數(shù)a的值;
(2)設(shè)h(x)=f(x)+g(x),若對任意兩個不等的正數(shù)x1 , x2 , 都有 >2恒成立,求實數(shù)a的取值范圍;
(3)若在[1,e]上存在一點x0 , 使得f′(x0)+ <g(x0)﹣g′(x0)成立,求實數(shù)a的取值范圍.
【答案】
(1)解:y=f(x)﹣g(x)= x2﹣alnx的導數(shù)為x﹣ ,
曲線y=f(x)﹣g(x)在x=1處的切線斜率為k=1﹣a,
由切線的方程為6x﹣2y﹣5=0,可得1﹣a=3,
解得a=﹣2;
(2)解:h(x)=f(x)+g(x)= x2+alnx,
對任意兩個不等的正數(shù)x1,x2,都有 >2恒成立,即為
>0,
令m(x)=h(x)﹣2x,可得m(x)在(0,+∞)遞增,
由m′(x)=h′(x)﹣2=x+ ﹣2≥0恒成立,
可得a≥x(2﹣x)的最大值,由x(2﹣x)=﹣(x﹣1)2+1可得最大值1,
則a≥1,即a的取值范圍是[1,+∞)
(3)解:不等式f′(x0)+ <g(x0)﹣g′(x0)等價于x0+ <alnx0﹣ ,
整理得x0﹣alnx0+ <0,設(shè)m(x)=x﹣alnx+ ,
則由題意可知只需在[1,e]上存在一點x0,使得m(x0)<0.
對m(x)求導數(shù),得m′(x)=1﹣ ﹣ = = ,
因為x>0,所以x+1>0,令x﹣1﹣a=0,得x=1+a.
①若1+a≤1,即a≤0時,令m(1)=2+a<0,解得a<﹣2.
②若1<1+a≤e,即0<a≤e﹣1時,m(x)在1+a處取得最小值,
令m(1+a)=1+a﹣aln(1+a)+1<0,即1+a+1<aln(1+a),
可得 <ln(a+1)
考察式子 <lnt,因為1<t≤e,可得左端大于1,而右端小于1,所以不等式不能成立
③當1+a>e,即a>e﹣1時,m(x)在[1,e]上單調(diào)遞減,只需m(e)<0,得a> ,
又因為e﹣1﹣ = <0,則a> .
綜上所述,實數(shù)a的取值范圍是(﹣∞,﹣2)∪( ,+∞).
【解析】(1)求出函數(shù)y的導數(shù),可得切線的斜率,由切線方程可得a的方程,解得a即可;(2)由題意可得即為 >0,令m(x)=h(x)﹣2x,可得m(x)在(0,+∞)遞增,求出導數(shù),令導數(shù)大于等于0,分離參數(shù)a,由二次函數(shù)的最值,即可得到a的范圍;(3)原不等式等價于x0+ <alnx0﹣ ,整理得x0﹣alnx0+ <0,設(shè)m(x)=x﹣alnx+ ,求得它的導數(shù)m'(x),然后分a≤0、0<a≤e﹣1和a>e﹣1三種情況加以討論,分別解關(guān)于a的不等式得到a的取值,最后綜上所述可得實數(shù)a的取值范圍是(﹣∞,﹣2)∪( ,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x+2|+|x﹣1|.
(1)求f(x)的最小值及取得最小值時x的取值范圍;
(2)若集合{x|f(x)+ax﹣1>0}=R,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:x+y+8=0,圓O:x2+y2=36(O為坐標原點),橢圓C: =1(a>b>0)的離心率為e= ,直線l被圓O截得的弦長與橢圓的長軸長相等.
(I)求橢圓C的方程;
(II)過點(3,0)作直線l,與橢圓C交于A,B兩點設(shè) (O是坐標原點),是否存在這樣的直線l,使四邊形為ASB的對角線長相等?若存在,求出直線l的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某次數(shù)學考試的成績服從正態(tài)分布N(116,82),則成績在140分以上的考生所占的百分比為( ) (附:正態(tài)總體在三個特殊區(qū)間內(nèi)取值的概率值①P(μ﹣σ<X≤μ+σ)=0.6826;②P(μ﹣2σ<X≤μ+2σ)=0.9544;③P(μ﹣3σ<X≤μ+3σ)=0.9974)
A.0.3%
B.0.23%
C.1.3%
D.0.13%
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)g(x)=a﹣x2( ≤x≤e,e為自然對數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對稱的點,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為提高學生身體素質(zhì),決定對畢業(yè)班的學生進行身體素質(zhì)測試,每個同學共有4次測試機會,若某次測試合格就不用進行后面的測試,已知某同學每次參加測試合格的概率組成一個以 為公差的等差數(shù)列,若他參加第一次測試就通過的概率不足 ,恰好參加兩次測試通過的概率為 .
(Ⅰ)求該同學第一次參加測試就能通過的概率;
(Ⅱ)求該同學參加測試的次數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人約定晚6點到晚7點之間在某處見面,并約定甲若早到應等乙半小時,而乙還有其他安排,若乙早到則不需等待,則甲、乙兩人能見面的概率( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}是公差為正數(shù)的等差數(shù)列,a2和 a5是方程x2﹣12x+27=0 的兩實數(shù)根,數(shù)列{bn}滿足3n﹣1bn=nan+1﹣(n﹣1)an .
(Ⅰ)求an與bn;
(Ⅱ)設(shè)Tn為數(shù)列{bn}的前n項和,求Tn , 并求Tn<7 時n的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓Γ: +y2=1(a>1)的左焦點為F1 , 右頂點為A1 , 上頂點為B1 , 過F1 , A1 , B1三點的圓P的圓心坐標為( , ).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l:y=kx+m(k,m為常數(shù),k≠0)與橢圓Γ交于不同的兩點M和N.
(i)當直線l過E(1,0),且 +2 = 時,求直線l的方程;
(ii)當坐標原點O到直線l的距離為 時,求△MON面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com