函數(shù)f(x)的定義域?yàn)锳,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù),例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x2(x∈R)是單函數(shù);
②指數(shù)函數(shù)f(x)=2x(x∈R)是單函數(shù);
③若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù);
⑤若f(x)為單函數(shù),則函數(shù)f(x)在定義域上具有單調(diào)性.
其中的真命題是
 
.(寫出所有真命題的編號)
考點(diǎn):進(jìn)行簡單的合情推理
專題:綜合題,推理和證明
分析:利用單函數(shù)的定義當(dāng)f(x1)=f(x2)時總有x1=x2,分別對五個命題進(jìn)行判斷,可以得出正確結(jié)論.
解答: 解:①對于函數(shù)f(x)=x2,由f(x1)=f(x2)得x12=x22,即x1=-x2或x1=x2,所以①不是單函數(shù),①錯誤;
②對于函數(shù)f(x)=2x,由f(x1)=f(x2)得2x1=2x2,∴x1=x2,所以②是單函數(shù),②正確;
③對于f(x)為單函數(shù),則f(x1)=f(x2)時,有x1=x2,逆否命題是x1≠x2時,有f(x1)≠f(x2),所以③是正確的;
④若函數(shù)f(x)是單調(diào)函數(shù),則滿足f(x1)=f(x2)時,有x1=x2,所以④是單函數(shù),④正確;
⑤存在函數(shù)是單函數(shù),但函數(shù)f(x)在定義域上不具有單調(diào)性,故⑤不正確.
故答案為:②③④.
點(diǎn)評:本題主要考查與函數(shù)有關(guān)的命題的真假判斷,利用單函數(shù)的定義是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{bn}前n項(xiàng)和為Sn,且滿足Sn=
3
2
bn-n (n∈N*)
,若數(shù)列{an}滿足a1=1,an=bn(
1
b1
+
1
b2
+…
1
bn-1
) (n≥2,n∈N*)

(1)求b1,b2及bn;
(2)證明
an+1
an+1
=
bn
bn+1
(n≥2,n∈N*)
;
(3)求證:(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)<3(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足a1=1,an•an+1=2n,則S2012=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(k)=
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
(k∈N*),用數(shù)學(xué)歸納法證明過程中從f(k) 到f(k+1),需要增加的代數(shù)式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x為實(shí)數(shù),則“x≥3”是“x2-2x-3≥0”的
 
條件(填充分不必要、必要不充分、充要條件、既不充分也不必要).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a>0且a≠1,函數(shù)f(x)=
ax,x<3
ax+b,x≥3
,若數(shù)列{an}滿足an=f(n)(n∈N*),且{an}是等差數(shù)列,則a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[-2,2]上的連續(xù)函數(shù)f(x)滿足2013f(-x)=
1
2013f(x)
,且在[0,2]上為增函數(shù),若f(log2m)<f[log4(m+2)]成立,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,且x+y=1,求
1
x
+
1
y
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位有200名職工,現(xiàn)從中抽取40名職工作樣本,用系統(tǒng)抽樣的方法,將全體職工隨機(jī)按1~200編號,并按編號順序平均分為40組(1-5號,6-10號,…196-200號),若第5組抽出的是23號,則第8組抽到的號碼為( 。
A、36B、39C、37D、38

查看答案和解析>>

同步練習(xí)冊答案