【題目】已知定義域?yàn)?/span>的奇函數(shù)的圖像是一條連續(xù)不斷的曲線,當(dāng)時(shí),;當(dāng)時(shí),,且,則關(guān)于的不等式的解集為(

A. B. C. D.

【答案】A

【解析】根據(jù)奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,通過已知條件知道:函數(shù)f(x)(∞,1),(1,+∞)上單調(diào)遞減;[1,1]上單調(diào)遞增;

f(0)=0,f(2)=f(2)=0;

∴若1<x<1時(shí):x+1>0,∴由原不等式得f(x)>0=f(0),根據(jù)函數(shù)f(x)(1,1)上單調(diào)遞增得0<x<1;

x1,x+1>0,∴由原不等式得f(x)>0=f(2),根據(jù)函數(shù)f(x)[1,+∞)上單調(diào)遞減得1x<2;

x<1,x+1<0,∴由原不等式得f(x)<0=f(2),根據(jù)函數(shù)f(x)(∞,1)上單調(diào)遞減得2<x<1;

∴原不等式的解集為:(0,2)(2,1).

本題選擇A選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;
(2)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某個(gè)命題與正整數(shù)有關(guān),若當(dāng)n=k 時(shí)該命題成立,那么可推得當(dāng) n=k+1 時(shí)該命題也成立,現(xiàn)已知當(dāng) n=4 時(shí)該命題不成立,那么可推得( )
A.當(dāng) n=5 時(shí),該命題不成立
B.當(dāng) n=5 時(shí),該命題成立
C.當(dāng) n=3 時(shí),該命題成立
D.當(dāng) n=3 時(shí),該命題不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的奇函數(shù)的圖像是一條連續(xù)不斷的曲線,當(dāng)時(shí),;當(dāng)時(shí),,且,則關(guān)于的不等式的解集為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線.

(1)當(dāng)時(shí),求曲線在處的切線方程;

2)過點(diǎn)作曲線的切線,若所有切線的斜率之和為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)數(shù)z滿足,.求z的值和|z-ω|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)性;

(3)若函數(shù)處取得極小值,設(shè)此時(shí)函數(shù)的極大值為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知(x+1)n=a0+a1(x-1)+a2(x-1)2+...+an(x-1)n ,(其中 ).
(1)求 a0 及Sn=a1+a2+...+an ;
(2)試比較 Sn 與(n-2)2n+2n2 的大小,并用數(shù)學(xué)歸納法給出證明過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E:y2=2px(p>0)的準(zhǔn)線與x軸交于點(diǎn)K,過點(diǎn)K作圓C:(x﹣2)2+y2=1的兩條切線,切點(diǎn)為M,N,|MN|=
(1)求拋物線E的方程
(2)設(shè)A、B是拋物線E上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且 = (其中O為坐標(biāo)原點(diǎn))
①求證:直線AB必過定點(diǎn),并求出該定點(diǎn)Q的坐標(biāo)
②過點(diǎn)Q作AB的垂線與拋物線交于G、D兩點(diǎn),求四邊形AGBD面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案