4.等差數(shù)列a1,a2,…,am的和為-64,而且am-1+a2=-8,那么其項數(shù)m=16.

分析 利用等差數(shù)列的求和與性質(zhì)列出方程求解即可.

解答 解:等差數(shù)列a1,a2,…,am的和為-64,
可得$\frac{{a}_{1}+{a}_{m}}{2}×m$=-64,又a1+am=am-1+a2
而且am-1+a2=-8,可得-4m=64,解得m=16.
故答案為:16.

點評 本題考查數(shù)列求和以及等差數(shù)列的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列各組函數(shù)中是同一函數(shù)的是( 。
A.$y=\frac{x^2}{x}$與y=xB.$y=\sqrt{x^2}$與y=xC.y=x0與y=1D.$y=\root{3}{x^3}$與y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y≤2\\ x+y≥0\\ x≤4\end{array}\right.$,則z=2x+3y的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.過P(1,2)的l與⊙C:(x-2)2+(y-1)2=9相交于A,B,S△ABC的最大值為$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)a=($\frac{2}{7}$)0.3,b=($\frac{2}{7}$)0.4,c=($\frac{2}{5}$)0.2,則a,b,c的大小關(guān)系是c>a>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=$\left\{\begin{array}{l}x+8,x∈[-1,1]\\ 2x+6,x∈(1,2]\end{array}\right.$,則f(x)的最大值、最小值分別為( 。
A.10,7B.10,8C.8,6D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知集合M={0,1},A={(x,y)|x∈M,y∈M},B={(x,y)|y=-x+1},那么A∩B={(0,1),(1,0)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.寫出下列集合中的元素:
(1){小于12的質(zhì)數(shù)};
(2){倒數(shù)等于其本身的數(shù)};
(3){平方數(shù)等于其本身的數(shù)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知:f(x)=$\left\{\begin{array}{l}{sinπx,x<0}\\{f(x-1)+1,x≥0}\end{array}\right.$g(x)=$\left\{\begin{array}{l}{cosπx,x<\frac{1}{2}}\\{g(x-1)-1,x≥\frac{1}{2}}\end{array}\right.$
求證:g($\frac{1}{4}$)+f($\frac{1}{3}$)+g($\frac{5}{6}$)+f($\frac{3}{4}$)=1.

查看答案和解析>>

同步練習(xí)冊答案