點P是橢圓數(shù)學公式上一點,F(xiàn)1、F2是其焦點,若∠F1PF2=90°,△F1PF2面積為________.

9
分析:根據(jù)橢圓方程算出c==,從而Rt△F1PF2中得到|PF1|2+|PF2|2=28,結(jié)合橢圓的定義聯(lián)解,得到|PF1|•|PF2|=18,最后用直角三角形面積公式,即可算出△F1PF2的面積.
解答:∵橢圓方程為,
∴a2=16,b2=9.可得c==
因此Rt△F1PF2中,|F1F2|=2,由勾股定理得
|PF1|2+|PF2|2=(2=28…①
根據(jù)橢圓的定義,得|PF1|+|PF2|=2a=8…②
①②聯(lián)解,可得|PF1|•|PF2|=18
∴△F1PF2面積S=|PF1|•|PF2|=9
故答案為:9
點評:本題給出橢圓方程,求當焦點三角形是直角三角形時求焦點三角形的面積,著重考查了勾股定理、橢圓的標準方程與簡單性質(zhì)等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在原點,一個焦點F(-2,0),且長軸長與短軸長的比是2:
3

(1)求橢圓C的方程;
(2)設點M(m,0)在橢圓C的長軸上,點P是橢圓上任意一點.當|
MP
|
最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,P是橢圓上一點,且∠F1PF2=60°,設
|PF1|
|PF2|

(1)求橢圓C的離心率e和λ的函數(shù)關系式e=f(λ)
(2)若橢圓C的離心率e最小,且橢圓C上的動點M到定點N(0,
1
2
)
的最遠距離為
5
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
25
+
y2
16
=1的右焦點為F,P是橢圓上一點,點M滿足|
MF
|=1,
MF
MP
=0,則|MP|的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖點F是橢圓的焦點,P是橢圓上一點,A,B是橢圓的頂點,且PF⊥x軸,OP∥AB,那么該橢圓的離心率是( 。
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在原點,一個焦點F(-2,0),且長軸長與短軸長的比是2:
3

(1)求橢圓C的方程;
(2)設點M(m,0)在橢圓C的長軸上,點P是橢圓上任意一點.當|
MP
|
最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案