已知函數(shù)f(x)=x3+ax2+bx+c(a,b,c∈R)的圖象過原點(diǎn),且在x=1處的切線為直線y=-
12

(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-2,2]上的最小值和最大值.
分析:(1)求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義,建立方程關(guān)系,求函數(shù)f(x)的解析式;
(2)利用導(dǎo)數(shù)和函數(shù)單調(diào)性之間的關(guān)系求函數(shù)的最值.
解答:解:(1)∵函數(shù)f(x)=x3+ax2+bx+c(a,b,c∈R)的圖象過原點(diǎn),
∴c=0,即f(x)=x3+ax2+bx.
f'(x)=3x2+2ax,
∵在x=1處的切線為直線y=-
1
2

∴f'(1)=0,且f(1)=-
1
2

即3+2a+b=0,且1+a+b=-
1
2
,
解得a=-
3
2
,b=0,
∴f(x)=x3-
3
2
x2,
(2)f'(x)=3x2-3x=3x(x-1),
由f'(x)>0得,x>1或x<0,
由f'(x)<0得,0<x<1,
即函數(shù)f(x)在(0,1)單調(diào)遞減,在(-∞,0)和(1,+∞)單調(diào)遞增,
∵f(-2)=-14,f(0)=0,f(1)=-
1
2
,f(2)=2,
∴函數(shù)的最大值為2,最小值為-14.
點(diǎn)評:本題主要考查導(dǎo)數(shù)的計(jì)算,以及導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)和函數(shù)之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案