14.已知函數(shù)f(x)=ax2-1的圖象在點A(1,f(1))處的切線l與直線8x-y+2=0平行,若數(shù)列{$\frac{1}{f(n)}$}的前n項和為Sn,則S2015的值為( 。
A.$\frac{4030}{4031}$B.$\frac{2014}{4029}$C.$\frac{2015}{4031}$D.$\frac{4030}{4031}$

分析 函數(shù)f(x)=ax2-1的圖象在點A(1,f(1))處的切線l與直線8x-y+2=0平行,可得f′(x)|x=1=(2ax)|x=1=2a=8,解得a.可得f(x)=4x2-1,$\frac{1}{f(n)}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}$$(\frac{1}{2n-1}-\frac{1}{2n+1})$.利用“裂項求和”即可得出.

解答 解:∵函數(shù)f(x)=ax2-1的圖象在點A(1,f(1))處的切線l與直線8x-y+2=0平行,
∴f′(x)|x=1=(2ax)|x=1=2a=8,
解得a=4.
∴f(x)=4x2-1,
f(n)=4n2-1.
∴$\frac{1}{f(n)}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}$$(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴數(shù)列{$\frac{1}{f(n)}$}的前n項和為Sn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.
則S2015=$\frac{2015}{4031}$.
故選:C.

點評 本題考查了利用導數(shù)研究切線、“裂項求和”,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.數(shù)列{an}中,a1∈Z,an+1=an+log2(1-$\frac{1}{n+1}$),則使{an}為整數(shù)的n的取值可能是( 。
A.1022B.1023C.1024D.1025

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)y=f(x)是奇函數(shù),當x>0時,f(x)=$\sqrt{x}+1$,則當x<0時,f(x)=-$\sqrt{-x}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如圖所示,A,B分別是橢圓的右、上頂點,C是AB的三等分點(靠近點B),F(xiàn)為橢圓的右焦點,OC的延長線交橢圓于點M,且MF⊥OA,則橢圓的離心率為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知R為實數(shù)集,M=$\left\{{y\left|{y=\sqrt{1+x}}\right.}\right\}$,$N=\left\{{x|y=\sqrt{x-1}}\right\}$,則M∩(∁RN)=(  )
A.{x|0≤x<1}B.{x|-1≤x<1}C.{x|-1≤x≤0}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設數(shù)列{an}前n項的和為${S_n},且{a_1}=1,\frac{S_n}{n}={a_n}-n+1$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設${b_n}={a_n}•{3^{a_n}}$,求數(shù)列{bn}前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.從1,2,3,…,9中,隨機抽取2個不同的數(shù),則這2個數(shù)的和是偶數(shù)的概率是$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.(1)計算$\frac{2}{3}lg8+lg25-{3^{2{{log}_3}5}}+{16^{\frac{3}{4}}}$的值;
(2)已知a+a-1=5,求a2+a-2和${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.證明:$\frac{1+sin2x}{cos2x}$=tan$(\begin{array}{l}{\frac{π}{4}+x}\end{array})$.

查看答案和解析>>

同步練習冊答案