已知函數(shù)f(x)=ax+lnx,g(x)=ex
(I)當(dāng)a≤0時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式數(shù)學(xué)公式有解,求實數(shù)m的取值菹圍;
(Ⅲ)定義:對于函數(shù)y=F(x)和y=G(x)在其公共定義域內(nèi)的任意實數(shù)x0,稱|F(x0)-G(x0)|的值為兩函數(shù)在x0處的差值.證明:當(dāng)a=0時,函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有差值都大干2.

解:(Ⅰ)函數(shù)f(x)的定義域為(0,+∞),f′(x)=(ax+lnx)′=a+
①當(dāng)a=0時,f′(x)>0,∴f(x)在(0,+∞)為單調(diào)遞增函數(shù);
②當(dāng)a<0時,f′(x)=0,得x=-,當(dāng)x∈(0,-)時,f′(x)>0;當(dāng)x∈(-,+∞)時,f′(x)<0;
∴f(x)在(0,-)為單調(diào)遞增函數(shù);在(-,+∞)為單調(diào)遞減函數(shù);
(II)由題意,不等式有解,即ex<x-m有解,
因此只須m<x-ex,x∈(0,+∞),
設(shè)h(x)=x-ex,x∈(0,+∞),h′(x)=1-ex+),
因為+≥2=>1,且ex>1,∴1-ex+)<0,故h(x)在(0,+∞)上是減函數(shù),
∴h(x)<h(0)=0,故m<0.
(III)當(dāng)a=0時,f(x)=lnx,f(x)與g(x)的公共定義域為(0,+∞),
|f(x)-g(x)|=|lnx-ex|=ex-lnx=ex-x-(lnx-x),設(shè)m(x)=ex-x,x∈(0,+∞),
因為m′(x)=ex-1>0,m(x)在(0,+∞)上是增函數(shù),m(x)>m(0)=1,
又設(shè)n(x)=lnx-x,x∈(0,+∞),
因為n′(x)=-1,當(dāng)x∈(0,1)時,n′(x)>0,n(x)在(0,1)上是增函數(shù),
當(dāng)x∈(1),+∞時,n′(x)<0,n(x)在(1.+∞)上是減函數(shù),∴當(dāng)x=1時,n(x)取得極大值點(diǎn),
即n(x)≤n(1)=-1,故|f(x)-g(x)|=m(x)-n(x)>1-(-1)=2,
即在其公共定義域內(nèi)的所有差值都大干2.
分析:(Ⅰ)先求出其導(dǎo)函數(shù),以及導(dǎo)函數(shù)大于0,小于0對應(yīng)的區(qū)間即可求函數(shù)f(x)的單調(diào)區(qū)間;
(II)因為關(guān)于x的不等式有解,將問題轉(zhuǎn)化為ex<x-m有解,利用常數(shù)分離法進(jìn)行求解;
(III)當(dāng)a=0時,f(x)=lnx,f(x)與g(x)的公共定義域為(0,+∞),由于|f(x)-g(x)|=|lnx-ex|=ex-lnx=ex-x-(lnx-x),設(shè)m(x)=ex-x,利用導(dǎo)數(shù)研究其單調(diào)性得出m(x)>m(0)=1,同樣地,設(shè)n(x)=lnx-x,x∈(0,+∞),得到n(x)≤n(1)=-1,從而有|f(x)-g(x)|=m(x)-n(x)>1-(-1)=2,即在其公共定義域內(nèi)的所有差值都大干2.
點(diǎn)評:本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間的方法,求函數(shù)的導(dǎo)數(shù)以及利用導(dǎo)數(shù)研究函數(shù)的極值.注意函數(shù)的定義域,此題是一道中檔題,考查學(xué)生計算能力;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案