(本小題滿分12分)
如圖,正方形與梯形所在的平面互相垂直,,∥,
,點在線段上.
(I)當點為中點時,求證:∥平面;
(II)當平面與平面所成銳二面角的余弦值為時,求三棱錐的體積.
(1)見解析;(2)
【解析】本試題主要是考查了線面平行的判定和二面角的求解和錐體體積公式的運用。
(1)以以直線、、分別為軸、軸、軸建立空間
直角坐標系,然后表示直線的方向向量,和平面的法向量,利用向量的垂直關(guān)系來證明線面平行。
(2)結(jié)合已知條件中平面與平面所成銳二面角的余弦值為時,得到三棱錐的高,然后求解體積。
解:(1)以直線、、分別為軸、軸、軸建立空間
直角坐標系,則,,,所以.
∴————————2分
又,是平面的一個法向量.
∵即
∴∥平面——————4分
(2)設,則,
又
設,則,即.——6分
設是平面的一個法向量,則
取 得 即
又由題設,是平面的一個法向量,——————8分
∴ ————10分
即點為中點,此時,,為三棱錐的高,
∴ ————————————12分
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com