已知函數(shù)f(x)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零點,求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍.
分析:(1)y=f(x)在[-1,1]上單調(diào)遞減函數(shù),要存在零點只需f(1)≤0,f(-1)≥0即可
(2)存在性問題,只需函數(shù)y=f(x)的值域為函數(shù)y=g(x)的值域的子集即可.
解答:解:(Ⅰ):因為函數(shù)f(x)=x
2-4x+a+3的對稱軸是x=2,
所以f(x)在區(qū)間[-1,1]上是減函數(shù),
因為函數(shù)在區(qū)間[-1,1]上存在零點,
則必有:
即
,解得-8≤a≤0,
故所求實數(shù)a的取值范圍為[-8,0].
(Ⅱ)若對任意的x
1∈[1,4],總存在x
2∈[1,4],
使f(x
1)=g(x
2)成立,只需函數(shù)y=f(x)的值域為函數(shù)y=g(x)的值域的子集.
f(x)=x
2-4x+3,x∈[1,4]的值域為[-1,3],下求g(x)=mx+5-2m的值域.
①當(dāng)m=0時,g(x)=5-2m為常數(shù),不符合題意舍去;
②當(dāng)m>0時,g(x)的值域為[5-m,5+2m],要使[-1,3]⊆[5-m,5+2m],
需
,解得m≥6;
③當(dāng)m<0時,g(x)的值域為[5+2m,5-m],要使[-1,3]⊆[5+2m,5-m],
需
,解得m≤-3;
綜上,m的取值范圍為(-∞,-3]∪[6,+∞).
點評:本題主要考查了函數(shù)的零點,值域與恒成立問題.