.本小題滿分15分)
如圖,已知橢圓E,焦點(diǎn)為、,雙曲線G的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)是雙曲線G上異于頂點(diǎn)的任一點(diǎn),直線、與橢圓的交點(diǎn)分別為A、BCD,已知三角形的周長(zhǎng)等于,橢圓四個(gè)頂點(diǎn)組成的菱形的面積為.

(1)求橢圓E與雙曲線G的方程;
(2)設(shè)直線、的斜率分別為,探求
的關(guān)系;
(3)是否存在常數(shù),使得恒成立?
若存在,試求出的值;若不存在, 請(qǐng)說(shuō)明理由.
(1)由題意知,橢圓中 
所以橢圓的標(biāo)準(zhǔn)方程為              …………2分
又頂點(diǎn)與焦點(diǎn)重合,所以;   
所以該雙曲線的標(biāo)準(zhǔn)方程為。   …………4分 
(2)設(shè)點(diǎn)            
在雙曲線上,所以          所以  …………8分
(3)設(shè)直線AB:    
由方程組    ………10分
設(shè)
所以        
由弦長(zhǎng)公式   
同理       ………12分
代入得        ………13分
    
所以存在使得成立。   ………15分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)P在曲線C1上,點(diǎn)Q在曲線C2:(x-5)2y2=1上,點(diǎn)R在曲線C3:(x+5)2y2=1上,則| PQ |-| PR | 的最大值是
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的方程為,雙曲線的左、右焦
點(diǎn)分別是的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn).
(1)求雙曲線的方程;                                             
(2)若直線與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,求的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)上且,則的面積為(     )
A.B.  C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的左、右焦點(diǎn)分別為、,點(diǎn)在雙曲線的右支上,直線為過(guò)且切于雙曲線的直線,且平分,過(guò)作與直線平行的直線交點(diǎn),則,利用類比推理:若橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,直線為過(guò)且切于橢圓的直線,且平分的外角,過(guò)作與直線平行的直線交點(diǎn),則的值為 (     )  
A.B.C.D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),實(shí)軸長(zhǎng)為2
(1)求雙曲線C的方程;
(2)若直線lykx+與雙曲線C左支交于A、B兩點(diǎn),求k的取值范圍
(3)在(2)的條件下,線段AB的垂直平分線l0y軸交于M(0,m),求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,雙曲線的中心在原點(diǎn),焦點(diǎn)在軸上,一條漸近線方程為,則它的離心率為_(kāi)____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,截直線所得弦長(zhǎng)為的拋物線方
程為_(kāi)___________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

頂點(diǎn)在原點(diǎn),以軸為對(duì)稱軸且經(jīng)過(guò)點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為_(kāi)__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案