4、不等式x-(m2-2m+4)y-6>0表示的平面區(qū)域是以直x-(m2-2m+4)y-6=0為界的兩個(gè)平面區(qū)域中的一個(gè),且點(diǎn)(-1,-1)不在這個(gè)區(qū)域中,則實(shí)數(shù)m的取值范圍是(  )
分析:點(diǎn)A不在該區(qū)域即點(diǎn)A不滿足該不等式,把(-1,-1)代入不等式得-1-(m2-2m+4)×(-1)-6≤0
解答:解:(-1,-1)代入得,
-1-(m2-2m+4)×(-1)-6≤0,
m2-2m-3≤0
-1≤m≤3.
故選A
點(diǎn)評:本題考查線性規(guī)劃基本知識:不等式表示平面區(qū)域問題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的增函數(shù),且對于任意的x都有f(2-x)+f(x)=0恒成立.如果實(shí)數(shù)m、n滿足不等式組
f(m2-6m+23)+f(n2-8n)<0
m>3
’則m2+n2的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
aa2-1
(ax-a-x)
,其中a>0,a≠1
(1)寫出f(x)的奇偶性與單調(diào)性(不要求證明);
(2)若函數(shù)y=f(x)的定義域?yàn)椋?1,1),求滿足不等式f(1-m)+f(1-m2)<0的實(shí)數(shù)m的取值集合;
(3)當(dāng)x∈(-∞,2)時(shí),f(x)-4的值恒為負(fù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=3,若a,b∈[-1,1],a+b≠0時(shí),有
f(a)+f(b)
a+b
>0成立.
(1)判斷f(x)在[-1,1]上的單調(diào)性,并證明;
(2)解不等式:f(x+
1
2
)<f(
1
x-1
);
(3)若當(dāng)a∈[-1,1]時(shí),f(x)≤m2-2am+3對所有的x∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實(shí)數(shù)x滿足不等式|x-3|+|x-5|<m2-m,則實(shí)數(shù)m的取值范圍為
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•閔行區(qū)一模)已知二次函數(shù)f(x)=ax2+bx+c(a>0,c>0)的圖象與x軸有兩個(gè)不同的公共點(diǎn),且有f(c)=0,當(dāng)0<x<c時(shí),恒有f(x)>0.
(1)(文)當(dāng)a=1,c=
12
時(shí),求出不等式f(x)<0的解;
(2)(理)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函數(shù)的圖象與坐標(biāo)軸的三個(gè)交點(diǎn)為頂點(diǎn)的三角形的面積為8,求a的取值范圍;
(4)若f(0)=1,且f(x)≤m2-2km+1,對所有x∈[0,c],k∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案