動(dòng)點(diǎn)P在曲線y=2x2+1上運(yùn)動(dòng),則點(diǎn)P與定點(diǎn)(0,-1)連結(jié)的中點(diǎn)M的軌跡方程是(    )

A.y=2x2           B.y=4x2           C.y=6x2          D.y=8x2

B

解析:設(shè)M(x,y)、P(x0,y0),則

∴P(2x,2y+1).由P在曲線y=2x2+1上得y=4x2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下五個(gè)關(guān)于圓錐曲線的命題中:
①平面內(nèi)到定點(diǎn)A(1,0)和定直線l:x=2的距離之比為
1
2
的點(diǎn)的軌跡方程是
x2
4
+
y2
3
=1
;
②點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M點(diǎn)A的坐標(biāo)是A(3,6),則|PA|+|PM|的最小值是6;
③平面內(nèi)到兩定點(diǎn)距離之比等于常數(shù)λ(λ>0)的點(diǎn)的軌跡是圓;
④若動(dòng)點(diǎn)M(x,y)滿足
(x-1)2+(y+2)2
=|2x-y-4|
,則動(dòng)點(diǎn)M的軌跡是雙曲線;
⑤若過(guò)點(diǎn)C(1,1)的直線l交橢圓
x2
4
+
y2
3
=1
于不同的兩點(diǎn)A,B,且C是AB的中點(diǎn),則直線l的方程是3x+4y-7=0.
其中真命題的序號(hào)是
 
.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心在直線y=2x上,且與直線l:x+y+1=0相切于點(diǎn)P(-1,0).
(Ⅰ)求圓C的方程;
(Ⅱ)若A(1,0),點(diǎn)B是圓C上的動(dòng)點(diǎn),求線段AB中點(diǎn)M的軌跡方程,并說(shuō)明表示什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,設(shè)P為兩動(dòng)圓(x+2)2+y2=(r+2)2,(x-2)2+y2=r2(r>1)的一個(gè)交點(diǎn),記動(dòng)點(diǎn)P的軌跡為C.給出下列三個(gè)結(jié)論:
①曲線C過(guò)坐標(biāo)原點(diǎn);
②曲線C關(guān)于x軸對(duì)稱;
③設(shè)點(diǎn)P(x,y),則有|y|<|2x|.
其中,所有正確的結(jié)論序號(hào)是
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若動(dòng)點(diǎn)P,Q分別在曲線y=
1
x
和直線2x+y=0上運(yùn)動(dòng),則線段PQ長(zhǎng)的最小值為
2
10
5
2
10
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面內(nèi)兩定點(diǎn)F1(0,-
5
)、F2(0,
5
)
,動(dòng)點(diǎn)P滿足條件:|
PF1
|-|
PF2
|=4
,設(shè)點(diǎn)P的軌跡是曲線E,O為坐標(biāo)原點(diǎn).
(I)求曲線E的方程;
(II)若直線y=k(x+1)與曲線E相交于兩不同點(diǎn)Q、R,求
OQ
OR
的取值范圍;
(III)(文科做)設(shè)A、B兩點(diǎn)分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,記xA、xB分別為A、B兩點(diǎn)的橫坐標(biāo),求|xA•xB|的最小值.
(理科做)設(shè)A、B兩點(diǎn)分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,求△AOB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案