精英家教網 > 高中數學 > 題目詳情
如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且

(1)求橢圓的標準方程;
(2)設、是橢圓上位于直線同側的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關系,并求證直線的斜率為定值.
(1);(2)詳見解析.

試題分析:(1)利用題中條件先得出的值,然后利用條件,結合橢圓的對稱性得到點的坐標,然后將點的坐標代入橢圓方程求出的值,從而確定橢圓的方程;(2)將條件
得到直線的斜率直線的關系(互為相反數),然后設直線的方程為,將此直線的方程與橢圓方程聯(lián)立,求出點的坐標,注意到直線的斜率之間的關系得到點的坐標,最后再用斜率公式證明直線的斜率為定值.
(1),
是等腰三角形,所以,
點代入橢圓方程,求得,
所以橢圓方程為
(2)由題易得直線、斜率均存在,
,所以
設直線代入橢圓方程,
化簡得
其一解為,另一解為,
可求,
代入得,
為定值.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(2012•廣東)在平面直角坐標系xOy中,已知橢圓C:的離心率,且橢圓C上的點到點Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知實數構成一個等比數列,則圓錐曲線的離心率為(   )
A.B.C.D.或7

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

[2014·廈門模擬]已知橢圓+y2=1,F1,F2為其兩焦點,P為橢圓上任一點.則|PF1|·|PF2|的最大值為(  )
A.6B.4C.2D.8

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的一個焦點為,且離心率為
(1)求橢圓方程;
(2)過點且斜率為的直線與橢圓交于兩點,點關于軸的對稱點為,求△面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設F1、F2分別為雙曲線C:的左、右焦點,A為雙曲線的左頂點,以F1F2為直徑的圓交雙曲線的某條漸近線于M、N兩點,且滿足MAN=120o,則該雙曲線的離心率為(       )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足為坐標原點),當 時,求實數取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線與橢圓有相同的焦點,則該雙曲線的漸近線方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的焦距為 (    )
A.10B.5C.D.

查看答案和解析>>

同步練習冊答案