精英家教網 > 高中數學 > 題目詳情

已知點A(-1,0)、B(1,0)和動點P滿足:∠APB=2θ,且|PA|•|PB|cos2θ=1.
(1)求動點P的軌跡C的方程;
(2)設過點A的直線l交曲線C于E、F兩點,若△BEF的面積等于數學公式,求直線l的方程.

解:(1)在△PAB中,
由余弦定理得|AB|2=|PA|2+|PB|2-2|PA|•|PB|cos2θ,
∴4=(|PA|+|PB|)2-2|PA||PB|(1+cos2θ)
=(|PA|+|PB|)2-4|PA|•|PB|cos2θ
=(|PA|+|PB|)2-4.

即動點P的軌跡為以A、B為兩焦點的橢圓.
∴動點P的軌跡C的方程為:
(2)設直線l的方程為x=ty-1,
,
得到(t2+2)y2-2ty-1=0,
設E(x1,y1),F(x2,y2),
,

=
=
=
=
解得t2=1,
∴t=±1,
當t=±1,方程(t2+2)y2-2ty-1=0的△=4+4×3=16>0適合,
∴直線l的方程為x-y+1=0或x+y+1=0.
分析:(1)在△PAB中,由余弦定理得|AB|2=|PA|2+|PB|2-2|PA|•|PB|cos2θ,所以,由此能求出動點P的軌跡C的方程.
(2)設直線l的方程為x=ty-1,由,得到(t2+2)y2-2ty-1=0,設E(x1,y1),F(x2,y2),則,=.由此能求出直線l的方程.
點評:本題主要考查直線與圓錐曲線的綜合應用能力,綜合性強,是高考的重點,易錯點是知識體系不牢固.本題具體涉及到軌跡方程的求法及直線與雙曲線的相關知識,解題時要注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,已知點A(-1,0)與點B(1,0),C是圓x2+y2=1上的動點,連接BC并延長至D,使得|CD|=|BC|,求AC與OD的交點P的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(-1,0),B(0,2),點P是圓(x-1)2+y2=1上任意一點,則△PAB面積的最大值是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(1,0),B(0,1)和互不相同的點P1,P2,P3,…,Pn,…,滿足
OPn
=an
OA
+bn
OB
(n∈N*)
,O為坐標原點,其中an、bn分別為等差數列和等比數列,若P1是線段AB的中點,設等差數列公差為d,等比數列公比為q,當d與q滿足條件
 
時,點P1,P2,P3,…,Pn,…共線.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(-1,0),B(1,0),M是平面上的一動點,過M作直線l:x=4的垂線,垂足為N,且|MN|=2|MB|.
(1)求M點的軌跡C的方程;
(2)當M點在C上移動時,|MN|能否成為|MA|與|MB|的等比中項?若能求出M點的坐標,若不能說明理.

查看答案和解析>>

科目:高中數學 來源: 題型:

點A到圖形C上每一個點的距離的最小值稱為點A到圖形C的距離.已知點A(1,0),圓C:x2+2x+y2=0,那么平面內到圓C的距離與到點A的距離之差為1的點的軌跡是( 。

查看答案和解析>>

同步練習冊答案