18.過點(diǎn)M(-4,2),傾斜角是90°的直線方程為x=-4.

分析 過點(diǎn)M(-4,2),傾斜角是90°的直線,可得直線⊥x軸,即可得到方程.

解答 解:∵過點(diǎn)M(-4,2),傾斜角是90°的直線,
∴直線⊥x軸,其方程為x=-4.
故答案為:x=-4.

點(diǎn)評 本題考查了直線的傾斜角為90°時的直線方程,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知?ABCD中,點(diǎn)E是對角線AC上靠近A的一個三等分點(diǎn),設(shè)$\overrightarrow{EA}$=a,$\overrightarrow{EB}$=b,則向量$\overrightarrow{BC}$等于( 。
A.2a+bB.-$\frac{1}{2}$a-bC.$\frac{1}{2}$b-2aD.-b-2a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)和拋物線y2=2px(p>0)相交于A、B兩點(diǎn),直線AB過拋物線的焦點(diǎn)F1,且|AB|=8,橢圓的離心率為$\frac{\sqrt{2}}{2}$.
(I)求橢圓和拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在過(-2,0)與拋物線相切且被橢圓截得的弦CD的長恰為$\frac{20\sqrt{2}}{3}$的直線,若不存在.請說明理由;若存在,請求出直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=ax3+bsinx+5,且f(7)=9,則f(-7)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列各函數(shù)中,為指數(shù)函數(shù)的是( 。
A.y=(-1.3)xB.y=${(\frac{1}{2})}^{x}$C.y=x2D.y=x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知M(-2,1),N(2,3),則以MN為斜邊的直角三角形的直角頂點(diǎn)P的軌跡方程是( 。
A.x2+(y-2)2=5B.x2+(y-2)2=15
C.x2+(y-2)2=5(x≠2y-4)D.x2+(y-2)2=15(x≠2y-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖所示的程序框圖,它的輸出結(jié)果是( 。
A.-1B.0C.1D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,正方體棱長為4,M,P分別為A1B1,B1C1的中點(diǎn),設(shè)點(diǎn)D,M,P三點(diǎn)的平面與棱CC1交于點(diǎn)N,求PM+PN的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在幾何體ABDCE中,AB=AD,AE⊥平面ABD,M為線段BD的中點(diǎn),MC∥AE,AE=MC.
(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點(diǎn),求證:平面AMN∥平面BEC.

查看答案和解析>>

同步練習(xí)冊答案