給出下列四個結論:

①若A、B、C、D是平面內四點,則必有+=+;

②“a>b>0”是“ab<”的充要條件;

③如果函數(shù)f(x)對任意的x∈R都滿足f(x)=-f(2+x),則函數(shù)f(x)是周期函數(shù);

④已知Sn是等差數(shù)列{an}(n∈N+)的前n項和,且S6>S7>S5,則S12>0.

其中正確結論的序號是___________.(填上所有正確結論的序號)

①③④  ①設O是平面內任意點,則+=+++,

+=+++,∴+=+,①正確.

②由a>b>0成立,可推得ab<;但ab<成立,

不一定有a>b>0成立,只需a≠b即可,所以應是充分不必要條件,②不正確.

③由f(x)=-f(2+x),∴f(2+x)=-f(4+x).

∴f(x)=f(4+x).∴周期為4,③正確.

④∵S6>S7,∴S7-S6<0.∴a7<0,S13=13a7<0.又S7>S5,∴S7-S5>0.

∴a6+a7>0,S12=(a1+a12)×12=6(a6+a7)>0,④正確.故①③④正確.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列四個結論:①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;②函數(shù)y=k3x(k>0)(k為常數(shù))的圖象可由函數(shù)y=3x的圖象經過平移得到;③函數(shù)y=
1
2
+
1
2x-1
(x≠0)是奇函數(shù)且函數(shù)y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函數(shù);④函數(shù)y=cos|x|是周期函數(shù).其中正確結論的序號是
 
.(填寫你認為正確的所有結論序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,線段AC1上有兩個動點E,F(xiàn),且EF=
3
3
.給出下列四個結論:
①BF∥CE;
②CE⊥BD;
③三棱錐E-BCF的體積為定值;
④△BEF在底面ABCD內的正投影是面積為定值的三角形;
其中,正確結論的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正三棱錐P-ABC中,D為PA的中點,O為△ABC的中心,給出下列四個結論:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正確結論的序號是
③④
③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•馬鞍山模擬)給出下列四個結論:
①命題''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,則a<b”的逆命題為真;
③已知直線l1:ax+2y-1=0,l1:x+by+2=0,則l1⊥l2的充要條件是
ab
=-2
;
④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x)且x>0時,f'(x)>0,g'(x)>0,則x<0時,f'(x)>g'(x).
其中正確結論的序號是
①④
①④
(填上所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波二模)已知平面α、β、γ、和直線l,m,且l⊥m,α⊥γ,α∩γ=m,γ∩β=l;給出下列四個結論:①β⊥γ ②l⊥α③m⊥β;④α⊥β.其中正確的是(  )

查看答案和解析>>

同步練習冊答案