【題目】如圖所示,正方形與直角梯形
所在平面互相垂直,
,
,
.
(I)求證: 平面
.
(II)求證: 平面
.
(III)求四面體的體積.
【答案】(1)見解析(2)見解析(3)
【解析】試題分析:(1)欲證AC⊥平面BDE,只需證明AC垂直平面BDE中的兩條相交直線即可,因為AC與BD是正方形ABCD的對角線,所以AC⊥BD,再正DE垂直AC所在的平面,得到AC垂直DE,而BD,DE是平面BDE中的兩條相交直線,問題得證.
(2)欲證AC∥平面BEF,只需證明AC平行平面BEF中的一條直線即可,利用中位線的性質(zhì)證明OG平行DE且等于DE的一半,根據(jù)已知AF平行DE且等于DE的一半,所以O(shè)G與AF平行且相等,就可得到AC平行FG,而FG為平面BEF中的一條直線,問題得證.
(3)四面體BDEF可以看做以△DEF為底面,以點B為頂點的三棱錐,底面三角形DEF的底邊DE=2,高DA=2,三棱錐的高為AB,長度等于2,再代入三棱錐的體積公式即可.
()因為平面
平面
,
,
即,所以
平面
,
因為平面
,所以
,
因為是正方形,所以
,
,所以
平面
.
()設(shè)
,取
中點
,連接
、
,如下圖:
所以平行且等于
,
因為,
,
所以平行且等于
,從而四邊形
是平行四邊形,
,因為
平面
,
平面
,所以
平面
,
即平面
.
()
,
,
因此四面體的體積
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|﹣2≤x<5},B={x|3x﹣5≥x﹣1}.
(1)求A∩B;
(2)若集合C={x|﹣x+m>0},且A∪C=C,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知橢圓的離心率為
,橢圓的短軸端點與雙曲線
的焦點重合,過點
且不垂直于
軸的直線
與橢圓
相交于
兩點.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 底面
為菱形,
平面
,點
在棱
上.
(Ⅰ)求證:直線平面
;
(Ⅱ)若平面
,求證:
;
(Ⅲ)是否存在點,使得四面體
的體積等于四面體
的體積的
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是菱形
所在平面外一點,
,
是等邊三角形,
,
,
是
的中點.
(Ⅰ)求證: 平面
;
(Ⅱ)求證:平面平面
;
(Ⅲ)求直線與平面
的所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)如圖給出的2004年至2013年我國二氧化硫年排放量(單位:萬噸)柱形圖,以下結(jié)論中不正確的是( )
A.逐年比較,2008年減少二氧化硫排放量的效果最顯著
B.2007年我國治理二氧化硫排放顯現(xiàn)成效
C.2006年以來我國二氧化硫年排放量呈減少趨勢
D.2006年以來我國二氧化硫年排放量與年份正相關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,
為棱
上一動點,
為底面
上一動點,
是
的中點,若點
都運動時,點
構(gòu)成的點集是一個空間幾何體,則這個幾何體是
A. 棱柱 B. 棱臺 C. 棱錐 D. 球的一部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐的三組相對棱(相對的棱是指三棱錐中成異面直線的一組棱)分別相等,且長分別為,其中
,則該三棱錐體積的最大值為
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某運動員每次投籃命中的概率為40%.現(xiàn)采用隨機(jī)模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示沒有命中;再以每三個隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )
A. 0.35 B. 0.25
C. 0,20 D. 0.15
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com