精英家教網 > 高中數學 > 題目詳情

,,且,則的夾角為          

A.B.C.D.

C

解析本題考查向量的知識
向量垂直則向量的數量積為0.
,所以,而范圍內,只有的余弦為,故選擇C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(x)≥F(x).則稱直線l為曲線S的“上夾線”.
(Ⅰ)已知函數f(x)=x-2sinx.求證:y=x+2為曲線f(x)的“上夾線”.
(Ⅱ)觀察下圖:
精英家教網
根據上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax+bsinx,當x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1,x2∈[-
π
3
,
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實數m的取值范圍;
(3)設直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當的說明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax+bsinx,當x=
π
3
時,f(x)取得極小值
π
3
-
3

(1)求a,b的值;
(2)設直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:
①直線l與曲線S相切且至少有兩個切點;
②對任意x∈R都有g(x)≥F(x).則稱直線l為曲線S的“上夾線”.
試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
(3)記h(x)=
1
8
[5x-f(x)]
,設x1是方程h(x)-x=0的實數根,若對于h(x)定義域中任意的x2、x3,當|x2-x1|<1,且|x3-x1|<1時,問是否存在一個最小的正整數M,使得|h(x3)-h(x2)|≤M恒成立,若存在請求出M的值;若不存在請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:022

給出下列命題:

A.若向量a、b的夾1角為q ,則;

B.(a+b)·c=a·c+b·c;

C.若向量的起點為A(-2,4),終點為B(2,1),則與x軸正方向所夾角的余弦值是;

D.若向量a=(m,4),且,則

其中不正確命題的序號有________.

查看答案和解析>>

科目:高中數學 來源:數學教研室 題型:022

給出下列命題:

A.若向量a、b的夾1角為q ,則;

B.(a+b)·c=a·c+b·c;

C.若向量的起點為A(-2,4),終點為B(2,1),則與x軸正方向所夾角的余弦值是;

D.若向量a=(m,4),且,則

其中不正確命題的序號有________.

查看答案和解析>>

同步練習冊答案