在△ABC中,內角A,B,C的對邊分別為a,b,c,若B=45°,a=4
3
,b=4
2
,則A等于( 。
A、60°或120°
B、120°
C、60°
D、以上答案都不對
考點:正弦定理
專題:解三角形
分析:由條件利用正弦定理求得sinA的值,可得A的值.
解答: 解:在△ABC中,∵B=45°,a=4
3
,b=4
2
,
由正弦定理可得
a
sinA
=
b
sinB
,即
4
3
sinA
=
4
2
sin45°
,解得sinA=
3
2
,
再由大邊對大角可得A>B=45°,∴A=60°,或 A=120°,
故選:A.
點評:本題主要考查正弦定理的應用,根據(jù)三角函數(shù)的值求角,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2-2x-lnx的單調增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某程序框圖如圖所示,則該程序運行后輸出的結果為(  )
A、0.2B、0.4
C、0.6D、0.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=
1+2i
1-i
的虛部是( 。
A、
3
2
i
B、
3
2
C、-
1
2
i
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a=
2
,b=
7
-
3
,c=
6
-
2
,則a,b,c的大小關系是( 。
A、a>b>c
B、a>c>b
C、b>a>c
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-x<0},B={x|x2+(1-a)x-a<0},則“a>1”是“A∩B≠∅”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=4x的焦點作直線l交拋物線于A、B兩點,若直線AB的斜率為2,則|AB|等于( 。
A、4B、5C、6D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A=45°,∠B=30°,∠A所對的邊為
2
,則∠B所對的邊為( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}為等差數(shù)列,且a2=-4,S7=0
(1)求數(shù)列{an}的通項公式;
(2)若等比數(shù)列{bn}滿足b1=-4,b2=a1+a2+a3,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案