已知橢圓的中心為坐標原點,短軸長為2,一條準線方程為l

⑴ 求橢圓的標準方程;

⑵ 設(shè)O為坐標原點,F是橢圓的右焦點,點M是直線l上的動點,過點FOM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值.

解:⑴∵橢圓C的短軸長為2,橢圓C的一條準線為l,

∴不妨設(shè)橢圓C的方程為.(2分)∴,( 4分)即.(5分)

∴橢圓C的方程為.(6分)

    ⑵ F(1,0),右準線為l, 設(shè),

     則直線FN的斜率為,直線ON的斜率為,(8分)

     ∵FNOM,∴直線OM的斜率為,(9分)

    ∴直線OM的方程為:,點M的坐標為.(11分)

    ∴直線MN的斜率為.(12分)

    ∵MNON,∴,    ∴,

,即.(13分)∴為定值.(14分)

說明:若學(xué)生用平面幾何知識(圓冪定理或相似形均可)也得分,設(shè)垂足為P,準線lx軸交于Q,則有,又,所以為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,
OA
+
OB
a
=(3,-1)共線.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)M為橢圓上任意一點,且
OM
OA
OB
(λ,μ∈R)
,證明λ22為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=
a2c
(a為長半軸,c為半焦距)上.
(1)求橢圓的標準方程
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點,過點F作OM的垂線與以O(shè)M為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標原點,斜率為1且過橢圓右焦點F(2,0)的直線交橢圓于A,B兩點,
OA
+
OB
a
=(3,-1)
共線,則該橢圓的長半軸長為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=
a2c
(a為長半軸,c為半焦距)上.
(1)求橢圓的標準方程;
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,
OA
+
OB
a
=(3,-1)
共線,則該橢圓的離心率為( 。
A、
5
3
B、
3
2
C、
6
3
D、
2
2
3

查看答案和解析>>

同步練習(xí)冊答案