已知函數(shù):f(x)=alnx-ax-3(a∈R)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],若函數(shù)在區(qū)間(t,3)上有最值,求實(shí)數(shù)m的取值范圍;
(3)求證:ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*
【答案】分析:(1)先對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),然后令導(dǎo)函數(shù)大于0(或小于0)求出x的范圍,根據(jù)f′(x)>0求得的區(qū)間是單調(diào)增區(qū)間,f′(x)<0求得的區(qū)間是單調(diào)減區(qū)間,即可得到答案.
(2))處的切線的傾斜角為45°,得到f′(2)=1求出a的值代入到 中化簡,求出導(dǎo)函數(shù),因?yàn)楹瘮?shù)在(2,3)上總存在極值得到 解出m的范圍記即可;(3)是近年來高考考查的熱點(diǎn)問題,即與函數(shù)結(jié)合證明不等式問題,常用的解題思路是利用前面的結(jié)論構(gòu)造函數(shù),利用函數(shù)的單調(diào)性,對(duì)于函數(shù)取單調(diào)區(qū)間上的正整數(shù)自變量n有某些結(jié)論成立,進(jìn)而解答出這類不等式問題的解.
解答:解:(1)
當(dāng)a>0時(shí),f(x)的單調(diào)增區(qū)間為(0,1],減區(qū)間為[1,+∞);
當(dāng)a<0時(shí),f(x)的單調(diào)增區(qū)間為[1,+∞),減區(qū)間為(0,1];
當(dāng)a=0時(shí),f(x)不是單調(diào)函數(shù)
(2)因?yàn)楹瘮?shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,
所以f′(2)=1,所以a=-2,,
,g′(x)=3x2+(4+m)x-2
因?yàn)閷?duì)于任意的t∈[1,2],函數(shù) 在區(qū)間(t,3)上
總存在極值,所以只需 ,解得
(3)令a=-1(或a=1)
此時(shí)f(x)=-lnx+x-3,
所以f(1)=-2,
由(1)知f(x)=-lnx+x-3,在[1,+∞)上單調(diào)遞增,
∴當(dāng)x∈(1,+∞)時(shí)f(x)>f(1),即-lnx+x-1>0,
∴l(xiāng)nx<x-1對(duì)一切x∈(1,+∞)成立,
∵n≥2,n∈N*
則有,
∴要證ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!
即要證,

=1-<1.
點(diǎn)評(píng):此題是個(gè)難題.本題考查利用函數(shù)的導(dǎo)數(shù)來求函數(shù)的單調(diào)區(qū)間,已知函數(shù)曲線上一點(diǎn)求曲線的切線方程即對(duì)函數(shù)導(dǎo)數(shù)的幾何意義的考查,考查求導(dǎo)公式的掌握情況.含參數(shù)的數(shù)學(xué)問題的處理,構(gòu)造函數(shù)求解證明不等式問題.以及考查學(xué)生創(chuàng)造性的分析解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的反函數(shù).定義:若對(duì)給定的實(shí)數(shù)a(a≠0),函數(shù)y=f(x+a)與y=f-1(x+a)互為反函數(shù),則稱y=f(x)滿足“a和性質(zhì)”;若函數(shù)y=f(ax)與y=f-1(ax)互為反函數(shù),則稱y=f(x)滿足“a積性質(zhì)”.
(1)判斷函數(shù)g(x)=x2+1(x>0)是否滿足“1和性質(zhì)”,并說明理由;
(2)求所有滿足“2和性質(zhì)”的一次函數(shù);
(3)設(shè)函數(shù)y=f(x)(x>0)對(duì)任何a>0,滿足“a積性質(zhì)”.求y=f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

17、已知函數(shù)y=f(x)和y=g(x)在[-2,2]的圖象如圖所示,則方程f[g(x)]=0有且僅有
6
個(gè)根;方程f[f(x)]=0有且僅有
5
個(gè)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)已知函數(shù)y=f(x)的圖象是折線段ABC,其中A(0,0)、B(
1
2
,5)、C(1,0),函數(shù)y=xf(x)(0≤x≤1)的圖象與x軸圍成的圖形的面積為
5
4
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),x∈R,有下列4個(gè)命題:
①若f(1+2x)=f(1-2x),則y=f(x)的圖象關(guān)于直線x=1對(duì)稱;
②y=f(x-2)與y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱;
③若y=f(x)為偶函數(shù),且y=f(2+x)=-f(x),則y=f(x)的圖象關(guān)于直線x=2對(duì)稱;
④若y=f(x)為奇函數(shù),且f(x)=f(-x-2),則y=f(x)的圖象關(guān)于直線x=1對(duì)稱.
其中正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x3+1.設(shè)f(x)的反函數(shù)是y=g(x),則g(-28)=
-3
-3

查看答案和解析>>

同步練習(xí)冊(cè)答案