A. | (-∞,5) | B. | (0,2] | C. | (0,5) | D. | [2,5) |
分析 根據(jù)題意,由函數(shù)單調(diào)性的性質(zhì)可得$\left\{\begin{array}{l}{a-5<0}\\{a>0}\\{2(a-5)+8≥\frac{2a}{2}}\end{array}\right.$,解可得a的取值范圍,即可得答案.
解答 解:根據(jù)題意,分段函數(shù)f(x)=$\left\{\begin{array}{l}{(a-5)x+8,x≤2}\\{\frac{2a}{x},x>2}\end{array}\right.$是(-∞,+∞)上的減函數(shù),
則必有$\left\{\begin{array}{l}{a-5<0}\\{a>0}\\{2(a-5)+8≥\frac{2a}{2}}\end{array}\right.$,
解可得:2≤a<5,即a的取值范圍為:[2,5);
故選:D.
點評 本題考查函數(shù)單調(diào)性的應(yīng)用,涉及分段函數(shù)問題,關(guān)鍵是掌握函數(shù)單調(diào)性的性質(zhì).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30 | B. | 54 | C. | 100 | D. | 112 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ②④ | B. | ②③ | C. | ②③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,$\frac{10}{3}$] | B. | [2,$\frac{10}{3}$] | C. | (2,+∞) | D. | [$\frac{10}{3}$,+∞] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1+\sqrt{5}}{2}$,+∞) | B. | (1+$\sqrt{5}$,+∞) | C. | (0,$\frac{\sqrt{5}-1}{2}$) | D. | ($\frac{1+\sqrt{5}}{4}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com