若函數(shù)f(x)的值如下表所示:則f[f(1)]=
1
1

x 0 1 2 3
f(x) 3 2 1 0
分析:由表直接得出f(1)=2,再由表得出結(jié)果.
解答:解:由表可知,f(1)=2,而f(2)=1
所以f[f(1)]=f(2)=1
故答案為:1
點(diǎn)評(píng):本題考查分段函數(shù)求函數(shù)值,按照由內(nèi)到外的順序逐步求解.要確定好自變量的取值或范圍,再代入相應(yīng)的解析式求得對(duì)應(yīng)的函數(shù)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廈門模擬)已知函數(shù)f(x)=Asin(2x+θ),其中A≠0,θ∈(0,
π
2
)
,試分別解答下列兩小題.
(I)若函數(shù)f(x)的圖象過點(diǎn)E(-
π
12
,1),F(xiàn)(
π
6
3
)
,求函數(shù)y=f(x)的解析式;
(Ⅱ)如圖,點(diǎn)M,N分別是函數(shù)y=f(x)的圖象在y軸兩側(cè)與x軸的兩個(gè)相鄰交點(diǎn),函數(shù)圖象上的一點(diǎn)P(t,
3
π
8
)滿足
PN
MN
=
π
2
 
16
,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:只能從下列A、B、C三題中選做一題,如果多做,則按第一題評(píng)閱記分)
A.(坐標(biāo)系與參數(shù)方程選做題)曲線
x=cosα
y=1+sinα
(α為參數(shù))與曲線ρ2-2ρcosθ=0的交點(diǎn)個(gè)數(shù)為
2
2

B.(不等式選講選做題)設(shè)函數(shù)f(x)=
|x+1|+|x-2|-a
,若函數(shù)f(x)的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是
(-∞,3]
(-∞,3]

C.(幾何證明選講選做題)如圖,從圓O外一點(diǎn)A引圓的切線AD和割線ABC,已知AC=6,圓O的半徑為3,圓心O到AC的距離為
5
,則AD=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建師大附中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=Asin(2x+θ),其中A≠0,,試分別解答下列兩小題.
(I)若函數(shù)f(x)的圖象過點(diǎn)E,求函數(shù)y=f(x)的解析式;
(Ⅱ)如圖,點(diǎn)M,N分別是函數(shù)y=f(x)的圖象在y軸兩側(cè)與x軸的兩個(gè)相鄰交點(diǎn),函數(shù)圖象上的一點(diǎn)P(t,)滿足,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年福建省廈門市高三5月適應(yīng)性考試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=Asin(2x+θ),其中A≠0,,試分別解答下列兩小題.
(I)若函數(shù)f(x)的圖象過點(diǎn)E,求函數(shù)y=f(x)的解析式;
(Ⅱ)如圖,點(diǎn)M,N分別是函數(shù)y=f(x)的圖象在y軸兩側(cè)與x軸的兩個(gè)相鄰交點(diǎn),函數(shù)圖象上的一點(diǎn)P(t,)滿足,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西省咸陽市高考數(shù)學(xué)模擬試卷1(文科)(解析版) 題型:解答題

(考生注意:只能從下列A、B、C三題中選做一題,如果多做,則按第一題評(píng)閱記分)
A.(坐標(biāo)系與參數(shù)方程選做題)曲線(α為參數(shù))與曲線ρ2-2ρcosθ=0的交點(diǎn)個(gè)數(shù)為   
B.(不等式選講選做題)設(shè)函數(shù),若函數(shù)f(x)的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是   
C.(幾何證明選講選做題)如圖,從圓O外一點(diǎn)A引圓的切線AD和割線ABC,已知AC=6,圓O的半徑為3,圓心O到AC的距離為,則AD=   

查看答案和解析>>

同步練習(xí)冊(cè)答案