函數(shù)f(x)=
1-x2
x+3
-m
有零點(diǎn)的充要條件是
m∈[0,
2
4
]
m∈[0,
2
4
]
分析:函數(shù)f(x)=
1-x2
x+3
-m
有零點(diǎn)?
1-x2
=m(x-3)
有實(shí)數(shù)解?y=
1-x2
與y=m(x-3)圖象有交點(diǎn).由此能求出函數(shù)f(x)=
1-x2
x+3
-m
有零點(diǎn)的充要條件.
解答:解:∵函數(shù)f(x)=
1-x2
x+3
-m
有零點(diǎn),
1-x2
x+3
-m=0
有解,
1-x2
=m(x-3)
有實(shí)數(shù)解,
∴y=
1-x2
與y=m(x-3)圖象有交點(diǎn)
∵函數(shù)y=
1-x2
(-1≤x≤1,0≤y≤1),
∴x2+y2=1  (-1≤x≤1,0≤y≤1)
圖象為半圓x2+y2=1,(-1≤x≤1,0≤y≤1),
函數(shù)y=m(x-3)圖象為過A(3,0)的一條直線.
過A(3,0)向半圓x2+y2=1,(-1≤x≤1,0≤y≤1)引切線,切點(diǎn)為Q,
∴OQ⊥AQ∴AQ=2
2
,
∴tan∠OAQ=
OQ
AQ
=
2
4
,
∴kAQ=-
2
4
,
∴-
2
4
≤m≤0.
故答案為:m∈[0,
2
4
].
點(diǎn)評(píng):本題考查充要條件的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意函數(shù)的零點(diǎn)性質(zhì)的靈活運(yùn)用.將有零點(diǎn)的問題轉(zhuǎn)化為兩個(gè)曲線有交點(diǎn)的問題,從而使得代數(shù)問題幾何化是本題解答中的亮點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(
x
-1)=-x
,則函數(shù)f(x)的表達(dá)式為( 。
A、f(x)=x2+2x+1(x≥0)
B、f(x)=x2+2x+1(x≥-1)
C、f(x)=-x2-2x-1(x≥0)
D、f(x)=-x2-2x-1(x≥-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①當(dāng)x∈R時(shí),f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值為0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是單調(diào)函數(shù),求k的取值范圍;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定取得最小值時(shí)x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
請(qǐng)觀察表中值y隨x值變化的特點(diǎn),完成以下的問題.
函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間(0,2)上遞減;
函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間
(2,0)
(2,0)
上遞增.
當(dāng)x=
2
2
時(shí),y最小=
4
4

證明:函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間(0,2)遞減.
思考:(直接回答結(jié)果,不需證明)
(1)函數(shù)f(x)=x+
4
x
(x<0)有沒有最值?如果有,請(qǐng)說明是最大值還是最小值,以及取相應(yīng)最值時(shí)x的值.
(2)函數(shù)f(x)=ax+
b
x
,(a<0,b<0)在區(qū)間
[-
b
a
,0)
[-
b
a
,0)
 和
(0,
b
a
]
(0,
b
a
]
上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綿陽二模)對(duì)于具有相同定義域D的函數(shù)f(x)和g(x),若對(duì)任意的x∈D,都有|f(x)-g(x)|≤1,則稱f(x)和g(x)在D上是“密切函數(shù)”.給出定義域均為D={x|1≤x≤3}的四組函數(shù)如下:
①f(x)=x2-x+1,g(x)=3x-2
②f(x)=x3+x,g(x)=3x2+x-1
③f(x)=log2(x+1),g(x)=3-x
④f(x)=
3
2
sin(
π
3
x+
π
3
),g(x)=
1
4
cos
π
3
x-
3
4
sin
π
3
x
其中,函數(shù)f(x)印g(x)在D上為“密切函數(shù)”的是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(
x
-1)=-x
,則函數(shù)f(x)的表達(dá)式為( 。
A.f(x)=x2+2x+1(x≥0)B.f(x)=x2+2x+1(x≥-1)
C.f(x)=-x2-2x-1(x≥0)D.f(x)=-x2-2x-1(x≥-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案