若復數(shù)Z滿足Z•(2+i)=2,則Z=( 。
分析:把給出的等式的兩邊同時乘以
1
2+i
,然后直接利用復數(shù)的除法運算化簡.
解答:解:由Z•(2+i)=2,得Z=
2
2+i
=
2(2-i)
(2+i)(2-i)
=
4-2i
5
=
4
5
-
2
5
i

故選C.
點評:本題考查了復數(shù)代數(shù)形式的乘除運算,復數(shù)的除法,采用分子分母同時乘以分母的共軛復數(shù),是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足|z|=|z+2+2i|,則|z-1+i|的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足z(2-i)=11+7i(i為虛數(shù)單位),則
.
z
為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足z(2-i)=11+7i,則z=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上海)若復數(shù)z滿足|z-i|≤
2
(i為虛數(shù)單位),則z在復平面內(nèi)所對應的圖形的面積為

查看答案和解析>>

同步練習冊答案