設(shè)數(shù)列的前n項和為,已知,

1)求數(shù)列的通項公式;

2)若,數(shù)列的前n項和為,,證明:.

 

【答案】

1;(2)證明過程詳見解析.

【解析】

試題分析:本題主要考查等比數(shù)列的通項公式、配湊法求通項公式、錯位相減法求和等基礎(chǔ)知識,考查學生分析問題解決問題的能力,考查轉(zhuǎn)化能力和計算能力.第一問,已知條件中只有一個等式,利用,用代替式子中的,得到一個新的表達式,兩個式子相減得到,再用配湊法,湊出等比數(shù)列,求出數(shù)列的通項公式;第二問,利用第一問的結(jié)論,先化簡表達式,再利用錯位相減法求數(shù)列的前n項和,最后的結(jié)果與2比較大小.

試題解析:,當

2

 即   

    

  即         6

   8

, 

12

考點:1 ;2 配湊法求通項公式;3 等比數(shù)列的通項公式;4 錯位相減法

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項a1為a(a∈R)設(shè)數(shù)列的前n項和為Sn,且
1
a1
,
1
a2
,
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式及Sn;
(Ⅱ)記An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+…+
1
a2n-1
,當n≥2時,試比較An與Bn的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的首項為a(a∈R,a≠0).設(shè)數(shù)列的前n項和為Sn,且對任意正整數(shù)n都有
a2n
an
=
4n-1
2n-1

(1)求數(shù)列{an}的通項公式及Sn;
(2)是否存在正整數(shù)n和k,使得Sn,Sn+1,Sn+k成等比數(shù)列?若存在,求出n和k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項為4,設(shè)數(shù)列的前n項和為Sn,且
1
a1
,
1
a2
,
1
a4
成等比數(shù)列.
(1)求數(shù)列{an}的通項公式an及Sn;
(2)記An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+
1
a22
+…+
1
a2n-1
,當n≥2時,試比較An與Bn的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項a1=a,a∈N*,設(shè)數(shù)列的前n項和為Sn,且
1
a1
,
1
a2
,
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,若A2011=
2011
2012
,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆廣西省桂林中學高三11月月考數(shù)學文卷 題型:解答題

(本小題滿分12分)設(shè)數(shù)列的前n項和為Sn=2n2,為等比數(shù)列,且(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求數(shù)列的前n項和Tn.

查看答案和解析>>

同步練習冊答案