下列函數(shù)中,最小正周期為π的是( 。
A、y=tan
x
2
B、y=|cosx|
C、y=3sin(x-
π
3
D、y=sin4x+π
考點(diǎn):三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用周期公式對(duì)四個(gè)選項(xiàng)中周期進(jìn)行求解.
解答: 解:A項(xiàng)中T=
π
1
2
=2π,
B項(xiàng)中T=
π
1
=π,
C項(xiàng)中T=
1
=2π,
D項(xiàng)中T=
4
=
π
2
,
故選B.
點(diǎn)評(píng):本題主要考查了三角函數(shù)周期公式的應(yīng)用.對(duì)于帶絕對(duì)值的函數(shù)解析式,可結(jié)合函數(shù)的圖象來判斷函數(shù)的周期.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a<b<0,則下列不等式一定成立的是( 。
A、
-a
-b
B、|a|>-b
C、
a
b
<1
D、
1
a
1
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)y=sin(2x),下面說法中正確的是( 。
A、函數(shù)是周期為π的奇函數(shù)
B、函數(shù)是周期為π的偶函數(shù)
C、函數(shù)是周期為2π的奇函數(shù)
D、函數(shù)是周期為2π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an},{bn}都是等比數(shù)列,它們的前n項(xiàng)和分別為Sn,Tn,且
Sn
Tn
=
3n+1
4
對(duì)n∈N*恒成立,則
an+1
bn+1
=( 。
A、3n
B、4n
C、3n或4n
D、(
4
3
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,D是直角△ABC斜邊BC上一點(diǎn),若AB=AD,AC=
3
DC,則sin∠ABD=( 。
A、
1
2
B、
2
2
C、
3
2
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從標(biāo)有數(shù)字3,4,5,6,7的五張卡片中任取2張不同的卡片,事件A=“取到2張卡片上數(shù)字之和為偶數(shù)”,事件B=“取到的2張卡片上數(shù)字都為奇數(shù)”,則P(B|A)=( 。
A、
1
4
B、
3
10
C、
3
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a14=
1
a
,a114=
1
b
,a2014=
1
c
,則ab+19bc-20ac=( 。
A、0B、14
C、114D、2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直四棱柱ABCD-A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F(xiàn)為棱BB1的中點(diǎn),M為線段AC1的中點(diǎn).
(1)求證:FM∥平面ABCD;
(2)求證:平面AFC1⊥平面ACC1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幼兒園小班的美術(shù)課上,老師帶領(lǐng)小朋友們用水彩筆為美術(shù)本上如右圖所示的兩個(gè)大小不同的氣球涂色,要求一個(gè)氣球只涂一種顏色,兩個(gè)氣球分別涂不同的顏色.該班的小朋友牛,F(xiàn)可用的有暖色系水彩筆紅色、橙色各一支,冷色系水彩筆綠色,藍(lán)色,紫色各一支.
(1)牛牛從他可用的五支水彩筆中隨機(jī)的取出兩支按老師要求為氣球涂色,問兩個(gè)氣球同為冷色的概率是多大?
(2)一般情況下,老師發(fā)出開始指令到涂色活動(dòng)全部結(jié)束需要10分鐘.牛牛至少需要2分鐘完成該項(xiàng)任務(wù).老師在發(fā)出開始指令1分鐘后隨時(shí)可能來到牛牛身邊查看涂色情況.問當(dāng)老師來到牛牛身邊時(shí)牛牛已經(jīng)完成任務(wù)的概率是多大?

查看答案和解析>>

同步練習(xí)冊(cè)答案