10.在區(qū)間(0,1)隨機(jī)地取出一個(gè)數(shù),則這個(gè)數(shù)小于$\frac{1}{3}$的概率是$\frac{1}{3}$.

分析 根據(jù)幾何概型的概率公式即可得到結(jié)論.

解答 解:區(qū)間(0,1)的兩端點(diǎn)間距離是1,在區(qū)間(0,$\frac{1}{3}$)內(nèi)任取一點(diǎn),該點(diǎn)表示的數(shù)都小于$\frac{1}{3}$,
故在區(qū)間中隨機(jī)地取出一個(gè)數(shù),這個(gè)數(shù)小于$\frac{1}{3}$的概率$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題主要考查概率的計(jì)算,根據(jù)幾何概型的概率公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,M是A1D1的中點(diǎn),點(diǎn)P在側(cè)面 BCC1B1上運(yùn)動(dòng).現(xiàn)有下列命題:
①若點(diǎn)P總保持PA⊥BD1,則動(dòng)點(diǎn)P的軌跡所在的曲線是直線;
②若點(diǎn)P到點(diǎn)A的距離為$\frac{2\sqrt{3}}{3}$,則動(dòng)點(diǎn)P的軌跡所在的曲線是圓;
③若P滿足∠MAP=∠MAC1,則動(dòng)點(diǎn)P的軌跡所在的曲線是橢圓;
④若P到直線BC與直線C1D1的距離比為2:1,則動(dòng)點(diǎn)P的軌跡所在的曲線是雙曲線;
⑤若P到直線AD與直線CC1的距離相等,則動(dòng)點(diǎn)P的軌跡所在的曲線是拋物線.
其中真命題的個(gè)數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知某一隨機(jī)變量ξ的概率分布如下,且E(ξ)=6.3,則a的值為7.
ξ4a9
P0.50.1b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某市A,B兩所中學(xué)的學(xué)生組隊(duì)參加信息聯(lián)賽,A中學(xué)推薦了3名男生、2名女生,B中學(xué)推薦了3名男生、4名女生,兩校所推薦的學(xué)生一起參加集訓(xùn).由于集訓(xùn)后隊(duì)員水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人、女生中隨機(jī)抽取3人組成代表隊(duì)參賽.
(Ⅰ)求A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率;
(Ⅱ)設(shè)X表示A中學(xué)參賽的男生人數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)已知3名男生的比賽成績(jī)分別為76,80,84,3名女生的比賽成績(jī)分別為77,a(a∈N*),81,若3名男生的比賽成績(jī)的方差大于3名女生的比賽成績(jī)的方差,寫出a的取值范圍(不要求過(guò)程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,PA=AD,F(xiàn)為PD的中點(diǎn).
(1)求證:AF⊥平面PDC;
(2)求直線AC與平面PCD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知點(diǎn)P(1,1),圓C:x2+y2-4y=0,過(guò)點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
(1)求M的軌跡方程;
(2)是否存在點(diǎn)M滿足OP⊥OM,若存在請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.我省某校要進(jìn)行一次月考,一般考生必須考5 門學(xué)科,其中語(yǔ)、數(shù)、英、綜合這四科是必考科目,另外一門在物理、化學(xué)、政治、歷史、生物、地理、英語(yǔ)Ⅱ中選擇.為節(jié)省時(shí)間,決定每天上午考兩門,下午考一門學(xué)科,三天半考完.
(1)若語(yǔ)、數(shù)、英、綜合四門學(xué)科安排在上午第一場(chǎng)考試,則“考試日程安排表”有多少種不同的安排方法;
(2)如果各科考試順序不受限制,求數(shù)學(xué)、化學(xué)在同一天考的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在直角坐標(biāo)系xoy中以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系.曲線C1的極坐標(biāo)方程和曲線C2的參數(shù)方程分別為ρ=4sinθ,$\left\{\begin{array}{l}{x=-1-2t}\\{y=5+2t}\end{array}\right.$(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程與曲線C2的普通方程,并指出是什么曲線;
(2)求曲線C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知點(diǎn)A(-1,0),B(1,0),△ABC的周長(zhǎng)為6.
(Ⅰ)求動(dòng)點(diǎn)C的軌跡E的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)B(1,0)的直線l與曲線E相交于不同的兩點(diǎn)M,N.若點(diǎn)P在y軸上,且|PM|=|PN|,求點(diǎn)P的縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案