已知拋物線方程C:y2=2px(p>0),點F為其焦點,點N(3,1)在拋物線C的內部,設點M是拋物線C上的任意一點,的最小值為4,
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點F作直線l與拋物線C交于不同兩點A、B,與y軸交于點P,且,試判斷λ12是否為定值?若是定值,求出該定值并證明;若不是定值,請說明理由。
解:(1)準線方程為l:,點M到l的距離設為d,
由拋物線定義,,所以p=2,
所以y2=4x。
(2)設
由題意知直線l的斜率k存在且不等于0,
設l:y=k(x-1),則P(0,-k),
,
,
∵k≠0,∴,
將y=k(x-1)代入y2=4x得
,
,
為定值。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線方程C:y2=2px(p>0),點F為其焦點,點N(3,1)在拋物線C的內部,設點M是拋物線C上的任意一點,|
MF
|+|
MN
|
的最小值為4.
(1)求拋物線C的方程;
(2)過點F作直線l與拋物線C交于不同兩點A、B,與y軸交于點P,且
PF
=λ1
FA
=λ2
FB
,試判斷λ12是否為定值?若是定值,求出該定值并證明;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年云南玉溪一中高三上學期期中考試文科數(shù)學試卷(解析版) 題型:選擇題

已知拋物線方程為,直線的方程為,在拋物線上有一動點P到y(tǒng)軸的距離為,P到直線的距離為,則的最小(  )

A.     B.      C.     D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省高三第一次模擬考試理科數(shù)學試卷(解析版) 題型:選擇題

已知拋物線方程為,直線的方程為,在拋物線上有一動點P到y(tǒng)軸的距離為,P到直線的距離為,則的最小值為

A.         B.       C.      D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年云南省玉溪一中高三(上)期中數(shù)學試卷(解析版) 題型:選擇題

已知拋物線方程為y2=4x,直線l的方程為x-y+4=0,在拋物線上有一動點P到y(tǒng)軸的距離為d1,P到直線l的距離為d2,則d1+d2的最小值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案