17.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{({k-1}){x^2}-3({k-1})x+\frac{13k-9}{4},x≥2}\\{{{({\frac{1}{2}})}^x}-1,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x<2}\end{array}}\right.$,若f(n+1)<f(n)對于一切n∈N+恒成立,則實數(shù)k的取值范圍為( 。
A.$k<-\frac{1}{5}$B.$\frac{2}{5}≤k<1$C.$k≤-\frac{2}{5}$D.k<1

分析 由f(n+1)<f(n)對于一切n∈N+恒成立,可得{f(n)}在n∈N+為遞減數(shù)列,分別討論各段的情況,即有k<1且f(2)<f(1),解不等式即可得到所求范圍.

解答 解:f(n+1)<f(n)對于一切n∈N+恒成立,
可得{f(n)}在n∈N+為遞減數(shù)列,
當(dāng)x≥2時,對稱軸為x=$\frac{3}{2}$<2,
即有k-1<0,即k<1①,
又x<2時,由指數(shù)函數(shù)的單調(diào)性,可得為減函數(shù),
由單調(diào)性的定義可得f(2)<f(1),
即為4(k-1)-6(k-1)+$\frac{13k-9}{4}$<$\frac{1}{2}$-1,
解得k<-$\frac{1}{5}$,②
由①②可得k<-$\frac{1}{5}$,
故選:A.

點評 本題分段函數(shù)的運用:求參數(shù)范圍,考查函數(shù)的單調(diào)性的運用,注意函數(shù)和數(shù)列的區(qū)別,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$\vec a=(1,-1)$,$\vec b=(-1,2)$,則$|{2\vec a-\vec b}$|=( 。
A.5B.0C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$α∈({0,\frac{π}{2}})∪({\frac{π}{2},π})$,且sinα,sin2α,sin4α成等比數(shù)列,則α的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<π)的圖象如圖所示,為了得到g(x)=Asinωx的圖象,可將f(x)的圖象( 。
A.向右平移$\frac{π}{12}$個單位B.向右平移$\frac{π}{6}$個單位
C.向左平移$\frac{π}{12}$個單位D.向左平移$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.關(guān)于x的方程x2+kx-k=0有兩個不相等的實數(shù)根x1,x2,且滿足1<x1<2<x2<3,則實數(shù)k的取值范圍是( 。
A.$({-\frac{9}{2},-4})$B.$({4,\frac{9}{2}})$C.(-6,-4)D.$({-4,\frac{4}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=x({\frac{2}{{{2^x}-1}}+k})$為偶函數(shù).
(1)求k的值;
(2)若$g(x)=\frac{f(x)}{x}$,當(dāng)x∈(0,1]時,求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=e2x+sinx-3x2+3x-1,g(x)=ax2+a2lnx(a∈R).
(1)若a=-1,求g(x)的極大值;
(2)若?x1∈[0,1],?x2∈(0,1],都有f(x1)≥g(x2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知橢圓的對稱軸是坐標(biāo)軸,離心率e=$\frac{2}{3}$,長軸長為6,則橢圓的方程( 。
A.$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{20}=1$B.$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{20}=1或\frac{{x}^{2}}{20}+\frac{{y}^{2}}{36}=1$
C.$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1$D.$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1或\frac{{x}^{2}}{5}+\frac{{y}^{2}}{9}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.“世界睡眠日”定在每年的3月21日.2015年的世界睡眠日主題是“科學(xué)管理睡眠”,以提高公眾對健康睡眠的自我管理能力和科學(xué)認(rèn)識.為此某網(wǎng)站2015年3月13日到3月20日持續(xù)一周的在線調(diào)查,共有200人參加調(diào)查,現(xiàn)將數(shù)據(jù)整理分組如題中表格所示.為了對數(shù)據(jù)進(jìn)行分析,采用了計算機輔助計算.分析中一部分計算見算法流程圖.
序號
(i)
分組
睡眠時間
組中值
(mi
頻數(shù)
(人數(shù))
頻率
(fi
1[4,5)4.580.04
2[5,6)5.5520.26
3[6,7)6.5m0.30
4[7,8)7.5560.28
5[8,9)8.520n
6[9,10]9.540.02
(1)求表格中m與n的值
(2)求輸出S的值
(3)S的統(tǒng)計意義是什么?

查看答案和解析>>

同步練習(xí)冊答案