3.復(fù)數(shù)(1-3i)2的虛部為(  )
A.-3iB.-6C.-6iD.3i

分析 利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.

解答 解:復(fù)數(shù)(1-3i)2=-8-6i,其虛部為-6.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)α是第三象限角.則$\frac{\sqrt{1+ta{n}^{2}α}}{cosα}$+tanα•$\sqrt{\frac{1}{co{s}^{2}α}-1}$等于( 。
A.-1B.1C.±1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}對(duì)任意m,n∈N*,滿足am+n=am•an,且a3=8,則a1=(  )
A.2B.1C.±2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}\end{array}\right.$(t是參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程$ρ=2cos(θ+\frac{π}{4})$.
(Ⅰ)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)M為曲線C上任意一點(diǎn),求x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=log${\;}_{\frac{1}{3}}$(x2-4x+3)的單調(diào)遞增區(qū)間為( 。
A.(3,+∞)B.(-∞,1)C.(-∞,1)∪(3,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x2-2ax+2,
(1)當(dāng)a=1時(shí)求f(x)的最小值;
(2)當(dāng)x∈[-1,+∞)時(shí),f(x)≥a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法中,正確的個(gè)數(shù)是( 。
①任取x>0,均有3x>2x;②當(dāng)a>0且a≠1時(shí),有a3>a2; ③y=($\sqrt{3}$)-x是增函數(shù)  ④y=2|x|的最小值為1;⑤在同一坐標(biāo)系中,y=2x與y=2-x的圖象關(guān)于x軸對(duì)稱.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.拋擲一粒分布均勻的骰子,觀察擲出的點(diǎn)數(shù),設(shè)事件A為出現(xiàn)奇數(shù)點(diǎn),事件B為出現(xiàn)2點(diǎn),則出現(xiàn)奇數(shù)點(diǎn)或兩點(diǎn)的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.計(jì)算${∫}_{0}^{\frac{π}{2}}(1-2sin^2\frac{x}{2})dx$=( 。
A.0B.1C.$\frac{π}{2}-\frac{1}{4}$D.$\frac{π}{2}-1$

查看答案和解析>>

同步練習(xí)冊(cè)答案