【題目】已知二次函數(shù).

1)若為偶函數(shù),求上的值域;

2)若的單調(diào)遞減區(qū)間為,求實(shí)數(shù)a構(gòu)成的的集合;

3)若時(shí),的圖像恒在直線的上方,求實(shí)數(shù)a的取值范圍.

【答案】123

【解析】

1)根據(jù)偶函數(shù)的對(duì)稱性,求出,結(jié)合函數(shù)圖像,即可求出上的值域;

2)根據(jù)二次函數(shù)的單調(diào)性,確定對(duì)稱軸滿足的條件,即可得出結(jié)論;

3時(shí),的圖像恒在直線的上方,即,

恒成立,分離參數(shù),轉(zhuǎn)化為參數(shù)與函數(shù)的最值關(guān)系,或設(shè),分類討論求出時(shí)的最小值,進(jìn)而解不等式,求出參數(shù)范圍.

1)根據(jù)題意,函數(shù),

為二次函數(shù),其對(duì)稱軸為,

為偶函數(shù),則,

解可得;則

又由,則有,

即函數(shù)的值域?yàn)?/span>

2)根據(jù)題意,函數(shù),

為二次函數(shù),其對(duì)稱軸為,

在區(qū)間上是減函數(shù),

,則,所以a的取值范圍是;

3)由題意知時(shí),恒成立,

方法一:所以恒成立,

因?yàn)?/span>,所以,

當(dāng)且僅當(dāng),即時(shí)取得“=”,

所以,解得,所以a的取值范圍是.

方法二:令,

所以只需,對(duì)稱軸為

當(dāng),即時(shí),,

解得,故;

當(dāng),即時(shí),

,

解得,故

當(dāng),即時(shí),,

解得,舍去;

綜上所述,a的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)從某學(xué)校高二年級(jí)男生中隨機(jī)抽取名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成組:第,第,,第,下圖是按上述分組方法得到的頻率分布直方圖.

1)估計(jì)這名男生身高的中位數(shù)和平均數(shù);

2)求這名男生當(dāng)中身高不低于的人數(shù),若在這名身高不低于的男生中任意抽取人,求這人身高之差不大于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查乘客的候車情況,公交公司在某為臺(tái)的名候車乘客中隨機(jī)抽取人,將他們的候車時(shí)間(單位:分鐘)作為樣本分成組,如下表所示:

組別

候車時(shí)間

人數(shù)

(1)求這名乘客的平均候車時(shí)間;

(2)估計(jì)這名候車乘客中候車時(shí)間少于分鐘的人數(shù);

(3)若從上表第三、四組的人中隨機(jī)抽取人作進(jìn)一步的問(wèn)卷調(diào)查,求抽到的兩人恰好來(lái)自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)滿足:的最小值為1,且在軸上的截距為4.

(1)求此二次函數(shù)的解析式;

(2)若存在區(qū)間,使得函數(shù)的定義域和值域都是區(qū)間,則稱區(qū)間為函數(shù)不變區(qū)間”.試求函數(shù)的不變區(qū)間;

(3)若對(duì)于任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某森林公園有一直角梯形區(qū)域ABCD,其四條邊均為道路,AD∥BC,∠ADC=90°,AB=5千米,BC=8千米,CD=3千米.現(xiàn)甲、乙兩管理員同時(shí)從地出發(fā)勻速前往D地,甲的路線是AD,速度為6千米/小時(shí),乙的路線是ABCD,速度為v千米/小時(shí).

(1)若甲、乙兩管理員到達(dá)D的時(shí)間相差不超過(guò)15分鐘,求乙的速度v的取值范圍;

(2)已知對(duì)講機(jī)有效通話的最大距離是5千米.若乙先到達(dá)D,且乙從AD的過(guò)程中始終能用對(duì)講機(jī)與甲保持有效通話,求乙的速度v的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求不等式的解集;

2)若不等式的解集包含[–1,1],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ )的周期為π,且圖象上的一個(gè)最低點(diǎn)為M( ).

(1)求f(x)的解析式及單調(diào)遞增區(qū)間;

(2)當(dāng)x∈[0,]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)、為雙曲線的左、右焦點(diǎn),過(guò)作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且,圓的方程是.

1)求雙曲線的方程;

2)過(guò)雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為,求的值;

3)過(guò)圓上任意一點(diǎn)作圓的切線交雙曲線、兩點(diǎn),中點(diǎn)為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有邊長(zhǎng)分別3,4,5的三角形兩個(gè),邊長(zhǎng)分別4,5,的三角形四個(gè),邊長(zhǎng)分別為,4,5的三角形六個(gè).用上述三角形為面,可以拼成______個(gè)四面體.

查看答案和解析>>

同步練習(xí)冊(cè)答案